LTC3586-1 [Linear Systems]

7-Channel Confi gurable High Power PMIC; 7通道的配可配置高功率PMIC
LTC3586-1
型号: LTC3586-1
厂家: Linear Systems    Linear Systems
描述:

7-Channel Confi gurable High Power PMIC
7通道的配可配置高功率PMIC

集成电源管理电路
文件: 总38页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3675  
7-Channel Configurable  
High Power PMIC  
FEATURES  
DESCRIPTION  
n
Four Monolithic Synchronous Buck DC/DCs  
The LTC®3675 is a digitally programmable high efficiency  
multioutput power supply plus dual string LED driver IC  
optimizedforhighpowersinglecellLi-Ion/Polymerapplica-  
tions. The DC/DCs consist of four synchronous buck con-  
verters (1A/1A/500mA/500mA), one synchronous boost  
DC/DC (1A), and one buck-boost DC/DC (1A) all powered  
from a 2.7V to 5.5V input. The 40V LED driver can regulate  
up to 25mA of current through two LED strings with up to  
10 LEDs each. The LED driver may also be configured as  
a general purpose high voltage boost converter.  
(1A/1A/500mA/500mA)  
n
Buck DC/DCs Can Be Paralleled to Deliver Up to  
2× Current with a Single Inductor  
n
Independent 1A Boost and 1A Buck-Boost DC/DCs  
2
n
Dual String I C Controlled 40V LED Driver  
2
n
I C Programmable Output Voltage, Operating  
Mode, and Switch Node Slew Rate for All DC/DCs  
2
2
n
n
I C Read Back of DC/DC, LED Driver, Fault Status  
I C Programmable V and Die Temperature  
IN  
Warnings  
DC/DC enables, output voltages, switch slew rates and  
operating modes may all be independently programmed  
n
Maskable Interrupts to Report DC/DC, V and Die  
IN  
2
Temperature Faults  
over I C or used in standalone mode via simple I/O and  
n
n
n
n
Pushbutton ON/OFF/RESET  
power-up defaults. The buck DC/DCs may be used inde-  
pendently or paralleled to achieve higher output currents  
withasharedinductor.LEDenable,60dBbrightnesscontrol  
Always-On 25mA LDO  
Low Quiescent Current: 16μA (All DC/DCs Off)  
4mm × 7mm × 0.75mm 44-Lead QFN Package  
2
and up/down gradation are programmed using I C. Alarm  
levels for low V and high die temperature may also be  
IN  
2
programmed via I C with a maskable interrupt output to  
APPLICATIONS  
monitor DC/DC and system faults.  
n
High Power (5W to 10W) Single Cell Li-Ion/Polymer  
Applications  
Pushbutton ON/OFF/RESET control and a power-on reset  
output provide flexible and reliable power-up sequenc-  
ing. The LTC3675 is available in a low profile (0.75mm),  
thermally enhanced 44-lead 4mm × 7mm QFN package.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks of  
Linear Technology Corporation and Hot Swap is a trademark of Linear Technology Corporation. All  
other trademarks are the property of their respective owners.  
n
Portable Industrial Applications, Handy Terminals,  
Portable Instruments  
Multioutput Low Voltage Power Supplies  
n
TYPICAL APPLICATION  
SW1  
SW2  
0.425V TO V , 1A MAX  
IN  
2.7V TO 5.5V  
V
IN  
0.425V TO V , 1A MAX  
IN  
SW3  
0.425V TO V , 500mA MAX  
IN  
0.425V TO V , 500mA MAX  
3
2
I C  
SW4  
SW5  
IN  
LTC3675  
EN1  
V
IN  
V
IN  
EN2  
VOUT5  
SWAB6  
SWCD6  
VOUT6  
TO 5.35V, 1A MAX  
EN3  
DIGITAL  
CONTROL  
EN4  
ENBB  
IRQB  
RSTB  
WAKE  
PBSTAT  
2.65V TO 5.25V, 1A MAX  
0.8V TO V , 25mA MAX  
LDO_OUT  
IN  
V
IN  
SW7  
ONB  
PUSH BUTTON  
CT  
LED1  
LED2  
0.01μF  
EXPOSED PAD  
UP TO 10 LEDS  
PER STRING  
3675 TA01  
3675fa  
1
LTC3675  
TABLE OF CONTENTS  
Features............................................................................................................................ 1  
Applications ....................................................................................................................... 1  
Typical Application ............................................................................................................... 1  
Description......................................................................................................................... 1  
Absolute Maximum Ratings..................................................................................................... 3  
Order Information................................................................................................................. 3  
Pin Configuration ................................................................................................................. 3  
Electrical Characteristics........................................................................................................ 4  
Typical Performance Characteristics .......................................................................................... 8  
Pin Functions.....................................................................................................................14  
Block Diagram....................................................................................................................16  
Operation..........................................................................................................................17  
Buck Switching Regulator .................................................................................................................................... 17  
Buck Regulators with Combined Power Stages.................................................................................................... 17  
Boost Switching Regulator ................................................................................................................................... 18  
Buck-Boost Switching Regulator .......................................................................................................................... 18  
LED Driver ............................................................................................................................................................ 18  
Pushbutton Interface and Power-Up Power-Down Sequencing ............................................................................ 19  
Power-Up and Power-Down via Pushbutton ......................................................................................................... 19  
2
Power-Up and Power-Down via Enable Pin or I C................................................................................................. 21  
LED Current Programming ................................................................................................................................... 21  
2
I C Interface.......................................................................................................................................................... 21  
Error Condition Reporting via RSTB and IRQB Pins ............................................................................................. 24  
Undervoltage and Overtemperature Functionality................................................................................................. 25  
Applications Information .......................................................................................................26  
Switching Regulator Output Voltage and Feedback Network................................................................................. 26  
Buck Regulators ................................................................................................................................................... 26  
Combined Buck Regulators .................................................................................................................................. 26  
Boost Regulator.................................................................................................................................................... 27  
Buck-Boost Regulator........................................................................................................................................... 28  
LED Driver ............................................................................................................................................................ 28  
Operating the LED Driver As a High Voltage Boost Regulator............................................................................... 29  
Input and Output Decoupling Capacitor Selection................................................................................................. 29  
Choosing the C Capacitor ................................................................................................................................... 30  
T
Programming the UVOT Register ......................................................................................................................... 30  
Programming the RSTB and IRQB Mask Registers .............................................................................................. 30  
Status Byte Read Back ......................................................................................................................................... 31  
PCB Considerations.............................................................................................................................................. 31  
Typical Applications.............................................................................................................33  
Package Description ............................................................................................................36  
Revision History .................................................................................................................37  
Typical Application ..............................................................................................................38  
Related Parts.....................................................................................................................38  
3675fa  
2
LTC3675  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , V  
, V  
, FB1-6, LED_OV, EN1-4, ENBB, LED_  
IN OUT5 OUT6  
FS, CT, WAKE, PBSTAT, IRQB, RSTB, ONB, DV ,  
CC  
SW5.............................................–0.3V to 6V (Static)  
LDO_OUT, LDOFB...–0.3V to Lesser of (V + 0.3V) or 6V  
IN  
CC  
EN1 1  
FB1 2  
FB2 3  
EN2 4  
SW1 5  
37 ENBB  
36 FB6  
35 FB5  
SCL, SDA .......... –0.3V to Lesser of (DV + 0.3V) or 6V  
SW1, SW2, SW3, SW4, SWAB6  
34 V  
33 V  
IN  
............................. –0.3V to Lesser of (V + 0.3V) or 6V  
OUT5  
IN  
OUT6  
V
V
6
7
32 SW5  
31 V  
IN  
SWCD6 ............–0.3V to Lesser of (V  
+ 0.3V) or 6V  
45  
IN  
IN  
GND  
SW2 8  
SW3 9  
30 LDO_OUT  
29 LDOFB  
28 ONB  
27 LED_FS  
26 WAKE  
25 PBSTAT  
24 IRQB  
SW7........................................................... –0.3V to 45V  
I
I
I
I
, I  
................................................................1.4A  
............................................................700mA  
V
10  
SW1 SW2  
IN  
SW4 11  
EN3 12  
EN4 13  
FB4 14  
FB3 15  
, I  
SW3 SW4  
, I  
, I  
................................................2.4A  
SW5 SWAB6 SWCD6  
............................................................................2A  
SW7  
23 RSTB  
Operating Junction Temperature Range (Notes 2, 3)  
............................................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 125°C  
UFF PACKAGE  
44-LEAD (7mm s 4mm) PLASTIC QFN  
T
= 125°C, θ = 45°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 45) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
44-Lead (7mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3675EUFF#PBF  
LTC3675EUFF#TRPBF  
3675  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3675fa  
3
LTC3675  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.7  
TYP  
MAX  
5.5  
UNITS  
l
l
l
V
V
V
V
Input Supply Range  
V
V
IN  
Falling Undervoltage Threshold  
Rising Undervoltage Threshold  
Falling Undervoltage Warning Threshold  
2.35  
2.45  
2.45  
2.55  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
50  
2.55  
2.65  
IN_FALLING  
IN_RISING  
IN_WARN  
V
UV[2], UV[1], UV[0] = 000  
UV[2], UV[1], UV[0] = 001  
UV[2], UV[1], UV[0] = 010  
UV[2], UV[1], UV[0] = 011  
UV[2], UV[1], UV[0] = 100  
UV[2], UV[1], UV[0] = 101  
UV[2], UV[1], UV[0] = 110  
UV[2], UV[1], UV[0] = 111  
V
V
V
V
V
V
V
V
V
V
V
IN  
Undervoltage Warning Hysteresis  
mV  
mV  
°C  
IN_HYS  
l
Undervoltage Warning Threshold Step Size  
Overtemperature Shutdown  
85  
100  
150  
115  
28  
IN_WARN(LSB)  
OT  
OT_WARN  
Overtemperature Warning Threshold; Die  
Temperature Below OT that Causes IRQB = 0 OT[1], OT[0] = 01  
OT[1], OT[0] = 00  
10  
20  
30  
40  
°C  
°C  
°C  
°C  
OT[1], OT[0] = 10  
OT[1], OT[0] = 11  
I
f
Input Supply Current  
All Switching Regulators and LED Driver  
in Shutdown, ONB = HIGH; Sum of All V  
Currents  
16  
μA  
VIN_ALLOFF  
IN  
l
l
Voltage Regulator Switching Frequency  
Falling PGOOD Threshold Voltage  
PGOOD Hysteresis  
All Voltage Regulators  
1.8  
88  
2.25  
92  
1
2.7  
96  
MHz  
%
OSC  
V
Full-Scale (1,1,1,1) Reference Voltage  
All Regulators Except LED Driver  
PGOOD(FALL)  
PGOOD(HYS)  
V
%
1A Buck Regulator (Buck Regulators 1 and 2)  
I
Pulse-Skipping Input Current  
V
V
= V = 0.85V (Notes 4, 5)  
105  
20  
200  
50  
μA  
μA  
VIN1,2  
FB1  
FB1  
FB2  
Burst Mode® Operation Input Current  
= V = 0.85V (Notes 4, 5)  
FB2  
I
PMOS Current Limit  
(Note 6)  
2.25  
780  
405  
2.8  
800  
425  
25  
3.35  
820  
445  
A
mV  
mV  
mV  
nA  
FWD1,2  
l
l
V
V
V
Feedback Regulation Voltage  
Feedback Regulation Voltage  
FB1, FB2 Regulation Voltage Step Size  
Feedback Leakage Current  
Maximum Duty Cycle  
Pulse-Skipping Mode Full-Scale (1,1,1,1)  
Pulse-Skipping Mode Full-Scale (0,0,0,0)  
FB1,2(HIGH)  
FB1,2(LOW)  
LSB1,2  
I
V
V
= V = 0.85V  
–50  
100  
50  
FB12  
FB1  
FB2  
l
D
R
R
= V = 0V  
FB1  
%
MAX1,2  
PMOS1,2  
NMOS1,2  
LEAKP1,2  
LEAKN1,2  
FB2  
PMOS On-Resistance  
I
I
= I  
= I  
= 100mA  
265  
280  
mΩ  
mΩ  
μA  
SW1  
SW1  
SW2  
SW2  
NMOS On-Resistance  
= –100mA  
I
I
PMOS Leakage Current  
EN1 = EN2 = 0  
EN1 = EN2 = 0  
–2  
–2  
2
2
NMOS Leakage Current  
μA  
2
R
Output Pull-Down Resistance in Shutdown  
Soft-Start Time  
EN1 = EN2 = 0 (I C Bit Set)  
10  
kΩ  
μs  
SWPD1,2  
t
500  
SS1,2  
500mA Buck Regulator (Buck Regulators 3 and 4)  
I
Pulse-Skipping Input Current  
Burst Mode Operation Input Current  
V
V
= V = 0.85V (Notes 4, 5)  
105  
20  
200  
50  
μA  
μA  
VIN3,4  
FB3  
FB3  
FB4  
= V = 0.85V (Notes 4, 5)  
FB4  
I
PMOS Current Limit  
(Note 6)  
0.75  
1.2  
1.65  
A
FWD3,4  
3675fa  
4
LTC3675  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
780  
405  
TYP  
800  
425  
25  
MAX  
820  
445  
UNITS  
mV  
mV  
mV  
nA  
l
l
V
V
V
Feedback Regulation Voltage  
Feedback Regulation Voltage  
FB3, FB4 Regulation Voltage Step Size  
Feedback Leakage Current  
Maximum Duty Cycle  
Pulse-Skipping Mode Full-Scale (1,1,1,1)  
Pulse-Skipping Mode Full-Scale (0,0,0,0)  
FB3,4(HIGH)  
FB3,4(LOW)  
LSB3,4  
I
V
V
= V = 0.85V  
–50  
100  
50  
FB3,4  
FB3  
FB4  
l
D
R
R
= V = 0V  
%
MAX3,4  
PMOS3,4  
NMOS3,4  
LEAKP3,4  
LEAKN3,4  
FB3  
FB4  
PMOS On-Resistance  
I
I
= I  
= I  
= 100mA  
500  
510  
mꢀ  
mꢀ  
μA  
SW3  
SW3  
SW4  
SW4  
NMOS On-Resistance  
= –100mA  
I
I
PMOS Leakage Current  
NMOS Leakage Current  
Output Pull-Down Resistance in Shutdown  
Soft-Start Time  
EN3 = EN4 = 0  
EN3 = EN4 = 0  
–1  
–1  
1
1
μA  
2
R
EN3 = EN4 = 0 (I C Bit Set)  
10  
kꢀ  
μs  
SWPD3,4  
SS3,4  
t
500  
Buck Regulators Combined  
I
I
I
PMOS Current Limit  
PMOS Current Limit  
PMOS Current Limit  
FB2 = V (Note 6)  
5.6  
4
A
A
A
FWD1+2  
FWD2+3  
FWD3+4  
IN  
FB3 = V (Note 6)  
IN  
FB4 = V (Note 6)  
2.4  
IN  
1A Boost Regulator  
I
PWM Mode  
Burst Mode Operation  
V
FB5  
V
FB5  
= 0.85V (Notes 4, 5)  
= 0.85V (Notes 4, 5)  
150  
35  
300  
60  
μA  
μA  
VIN5  
V
Maximum Regulated Output Voltage  
Forward Current Limit  
5.35  
2.5  
5.55  
3.15  
800  
425  
25  
5.75  
3.9  
V
A
OUT5(MAX)  
I
(Note 6)  
FWD5  
l
l
V
V
V
Feedback Regulation Voltage  
Feedback Regulation Voltage  
FB5 Regulation Voltage Step Size  
Feedback Leakage Current  
Maximum Duty Cycle  
PWM Mode Full-Scale (1,1,1,1)  
PWM Mode Full-Scale (0,0,0,0)  
780  
405  
820  
445  
mV  
mV  
mV  
nA  
FB5(HIGH)  
FB5(LOW)  
LSB5  
I
V
FB5  
= 0.85V  
–50  
50  
FB5  
DC  
NMOS Switch  
90  
%
MAX5  
PMOS5  
NMOS5  
LEAKP  
R
R
PMOS On-Resistance  
260  
275  
mꢀ  
mꢀ  
μA  
NMOS On-Resistance  
I
I
PMOS Switch Leakage Current  
NMOS Switch Leakage Current  
Output Pull-Down Resistance in Shutdown  
Soft-Start Time  
–2  
–2  
2
2
μA  
LEAKN  
R
Boost Regulator Off  
10  
kꢀ  
μs  
OUTPD5  
t
500  
SS5  
1A Buck-Boost Regulator  
I
PWM Mode  
Burst Mode Operation  
V
FB6  
V
FB6  
= 0.85V (Note 4, 5)  
= 0.85V(Note 4, 5)  
220  
20  
400  
40  
μA  
μA  
VIN6  
V
V
Minimum Regulated Output Voltage  
Maximum Regulated Output Voltage  
Forward Current Limit  
2.65  
5.65  
2.65  
275  
0
2.8  
V
V
OUT6(LOW)  
OUT6(HIGH)  
FWD6  
5.25  
2.1  
I
I
I
PWM Mode (Note 6)  
3.2  
350  
30  
A
Peak Current Limit  
Burst Mode Operation (Note 6)  
Burst Mode Operation  
200  
–30  
780  
405  
mA  
mA  
mV  
mV  
mV  
3675fa  
PEAK6  
ZERO6  
Zero Current Limit  
l
l
V
V
V
Feedback Regulation Voltage  
Feedback Regulation Voltage  
FB6 Regulation Voltage Step Size  
PWM Mode Full-Scale (1,1,1,1)  
PWM Mode Full-Scale (0,0,0,0)  
800  
425  
25  
820  
445  
FB6(HIGH)  
FB6(LOW)  
LSB6  
5
LTC3675  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
= 0.85V  
MIN  
–50  
100  
TYP  
MAX  
UNITS  
nA  
I
Feedback Leakage Current  
Maximum Buck Duty Cycle  
Maximum Boost Duty Cycle  
PMOS On-Resistance  
V
FB6  
50  
FB6  
l
DC6  
DC6  
Duty Cycle of PMOS Switch A  
Duty Cycle of NMOS Switch C  
Switches A and D  
%
BUCK(MAX)  
75  
%
BOOST(MAX)  
R
R
260  
275  
mΩ  
mΩ  
μA  
PMOS6  
NMOS On-Resistance  
Switches B and C  
NMOS6  
LEAKP  
LEAKN  
SS  
I
I
t
PMOS Switch Leakage Current  
NMOS Switch Leakage Current  
Soft-Start Time  
–2  
–2  
2
2
μA  
500  
10  
μs  
R
Output Pull-Down Resistance in Shutdown  
ENBB = 0  
kꢀ  
OUTPD6  
LED Driver; R  
= 20kΩ  
LED_FS  
I
Input Current (MODE0 = MODE1 = 0)  
LED_OV = 0.85V (Notes 4, 5)  
700  
1000  
μA  
VIN7  
l
l
V
LED Overvoltage Threshold  
Feedback Voltage  
Operating in LED Mode  
Operating in Boost Mode  
805  
770  
825  
800  
845  
830  
mV  
mV  
LED_OV  
l
V
V
V
LED Full-Scale Voltage  
775  
800  
300  
825  
mV  
mV  
V
LED_FS  
LED Pin Regulation Voltage  
LED Regulation Voltage Clamp  
Maximum Current Limit  
(Note 7)  
(Note 6)  
LED1,2  
l
6.0  
1.6  
8.3  
2.15  
26.75  
53.5  
1
LED1,2_CLMP  
LIM7  
I
I
I
I
1.85  
25.0  
50  
A
l
l
l
LED Full-Scale Current  
23.25  
46.5  
mA  
mA  
%
LED_FS  
LED Full Current High Current Mode  
LED_2FS  
LED1 and LED2 Current Matching at  
Full-Scale  
LED_MATCH  
|ILED1 ILED2  
|
100  
I
LED1 +ILED2  
2
I
LED Current LSB  
98  
μA  
mꢀ  
μA  
LED_LSB  
R
NMOS On-Resistance  
NMOS Switch Leakage  
Oscillator Frequency  
Maximum Duty Cycle  
300  
NMOS7  
I
V
= 5.5V  
–1  
1
LEAK_NMOS7  
SW7  
l
l
l
l
F
450  
562.5  
97  
675  
kHz  
%
LEDOSC  
DC  
NMOS Switch  
MAX7  
25mA Always-On LDO  
V
Feedback Regulation Voltage  
Dropout Resistance  
780  
1.6  
800  
12  
820  
mV  
LDOFB  
R
DO  
2
I C Port  
DV  
Input Supply Voltage  
Input Supply Current  
5.5  
1
V
μA  
V
CC  
I
SCL/SDA= 0kHz  
0.3  
1
DVCC  
DV  
DV UVLO  
CC_UVLO  
CC  
2
ADDRESS  
LTC3675 I C Address  
0001001[R/WB]  
V
V
Input High Voltage  
SDA/SCL  
SDA/SCL  
SDA/SCL  
SDA/SCL  
70  
30  
0
%DV  
%DV  
IH  
IL  
CC  
Input Low Voltage  
CC  
I
I
Input High Current  
–1  
–1  
1
1
μA  
μA  
V
IH  
IL  
Input Low Current  
0
V
SDA Output Low Voltage  
Clock Operating Frequency  
I
= 3mA  
0.4  
400  
OL_SDA  
SDA  
f
kHz  
SCL  
3675fa  
6
LTC3675  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Bus Free Time Between Stop and Start  
Condition  
1.3  
μs  
BUF  
t
t
t
t
t
t
t
t
t
t
t
Hold Time After Repeated Start Condition  
Repeated Start Condition Set-Up Time  
Stop Condition Set-Up Time  
Data Hold Time Output  
0.6  
0.6  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
HD_SDA  
SU_STA  
SU_STO  
HD_DAT(O)  
HD_DAT(I)  
SU_DAT  
LOW  
0.6  
0
900  
Data Hold Time Input  
0
Data Set-Up Time  
100  
SCL Clock Low Period  
1.3  
SCL Clock High Period  
0.6  
HIGH  
Clock/Data Fall Time  
C = Capacitance of One Bus Line (pF)  
20+0.1C  
20+0.1C  
300  
300  
50  
f
B
B
B
Clock/Data Rise Time  
C = Capacitance of One Bus Line (pF)  
B
r
Input Spike Suppression Pulse Width  
SP  
Interface Logic Pins (PBSTAT, WAKE, RSTB, IRQB, ONB)  
I
Output High Leakage Current  
Output Low Voltage  
3.6V at Pin  
–1  
1
μA  
mV  
mV  
mV  
LK(HIGH)  
V
V
V
3mA into Pin  
100  
800  
700  
400  
1200  
OL  
ONB High Threshold  
ONB Low Threshold  
ONB(HIGH)  
ONB(LOW)  
400  
400  
Interface Logic Pins (EN1, EN2, EN3, EN4, ENBB)  
l
l
V
V
V
Enable Rising Threshold  
Enable Falling Hysteresis  
Enable Rising Threshold  
Enable Pin Leakage Current  
All Regulators and LED Driver Disabled  
650  
60  
1200  
mV  
mV  
mV  
μA  
HI_ALLOFF  
EN_HYS  
HI  
At Least One Regulator/LED Driver Enabled  
EN = 3.6V  
380  
–1  
400  
420  
1
I
EN  
Pushbutton Parameters; CT = 0.01μF  
t
t
t
t
ONB Low Time to PBSTAT Low  
ONB Low Time to WAKE High  
ONB Low to Hard Reset  
WAKE High  
28  
280  
3.5  
0.7  
50  
400  
5
72  
520  
6.5  
1.3  
ms  
ms  
sec  
sec  
ONB_LO  
ONB_WAKE  
ONB_HR  
HR  
Time for Which All Enabled Regulators are  
Disabled  
1
t
t
PBSTAT Minimum Pulse Width  
WAKE High Time  
28  
50  
5
72  
ms  
sec  
PBSTAT_PW  
3.5  
6.5  
WAKE_ON  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Static current, switches not switching. Actual current may be  
higher due to gate charge losses at the switching frequency.  
Note 5: Currents measured at a specific V pin. Buck 1 (V , Pin 6);  
IN  
IN  
Buck 2 (V , Pin 7); Buck 3 and Buck 4 (V , Pin 10); Boost and Buck  
IN  
IN  
Note 2: The LTC3675 is tested under pulsed load conditions such that  
Boost (V , Pin 34); LED driver (V , Pin 31).  
IN IN  
T ≈ T . The LTC3675 is guaranteed to meet performance specifications  
A
J
Note 6: The current limit features of this part are intended to protect the  
IC from short term or intermittent fault conditions. Continuous operation  
above the maximum specified pin current rating may result in device  
degradation over time.  
from 0°C to 125°C. Specifications over the –40°C to 125°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 3: The LTC3675 includes overtemperature protection which protects  
the device during momentary overload conditions. Junction temperature  
will exceed 125°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
may impair device reliability.  
Note 7: With dual string operation, the LED pin with the lower voltage sets  
the regulation point.  
3675fa  
7
LTC3675  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Undervoltage Threshold  
vs Temperature  
Input Supply Current  
vs Temperature  
Oscillator Frequency  
vs Temperature  
2.50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
ALL REGULATORS AND LED  
DRIVER IN SHUTDOWN  
2.45  
2.40  
2.35  
V
IN_RISING  
V
V
= 5.5V  
= 2.7V  
IN  
IN  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
V
= 3.6V  
IN  
V
= 5.5V  
IN  
V
= 3.6V  
IN  
V
IN_FALLING  
V
= 2.7V  
IN  
0
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3675 G02  
3675 G03  
3675 G01  
Enable Pin Precision Threshold  
vs Temperature  
1A Buck Regulators,  
Efficiency vs Load  
Enable Threshold vs Temperature  
420  
415  
410  
405  
400  
395  
390  
385  
380  
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
THRESHOLD MEASURED WITH A  
V
= 1.2V  
ALL REGULATORS AND LED  
OUT  
REGULATOR ENABLED, V = 3.6V  
DRIVER DISABLED, V = 3.6V  
IN  
IN  
EN RISING  
EN RISING  
EN FALLING  
V
V
V
V
V
V
= 2.7V Burst Mode OPERATION  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.6V Burst Mode OPERATION  
= 5.5V Burst Mode OPERATION  
= 2.7V PULSE SKIPPING-MODE  
= 3.6V PULSE SKIPPING-MODE  
= 5.5V PULSE SKIPPING-MODE  
EN FALLING  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
1
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
3675 G05  
3675 G04  
3675 G06  
1A Buck Regulators,  
Efficiency vs Load  
1A Buck Regulators,  
Load Regulation  
1A Buck Regulators,  
Line Regulation  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
1.196  
1.192  
1.188  
1.184  
1.180  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
1.196  
1.192  
1.188  
1.184  
1.180  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PULSE-SKIPPING MODE  
PULSE-SKIPPING MODE  
LOAD = 500mA  
V
= 5.5V  
IN  
V
= 2.7V  
IN  
V
= 2.5V  
OUT  
V
= 3.6V  
LOAD = 100mA  
IN  
V
V
V
V
V
V
= 2.7V Burst Mode OPERATION  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.6V Burst Mode OPERATION  
= 5.5V Burst Mode OPERATION  
= 2.7V PULSE SKIPPING-MODE  
= 3.6V PULSE SKIPPING-MODE  
= 5.5V PULSE SKIPPING-MODE  
1
10  
100  
1000  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
1
10  
100  
1000  
LOAD CURRENT (mA)  
V
LOAD CURRENT (mA)  
IN  
3675 G08  
3675 G09  
3675 G06  
3675fa  
8
LTC3675  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
1A Buck Regulators, No Load  
1A Buck Regulators, Transient  
Response (Pulse-Skipping Mode)  
1A Buck Regulators, Transient  
Response (Burst Mode Operation)  
Start-Up Transient  
(Pulse-Skipping Mode)  
V
= 3.6V  
IN  
V
V
OUT1  
OUT1  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
V
OUT1  
500mV/DIV  
INDUCTOR  
CURRENT  
200mA/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
INDUCTOR  
CURRENT  
200mA/DIV  
0mA  
EN1  
2V/DIV  
0mA  
3675 G10  
3675 G12  
3675 G11  
50μs/DIV  
25μs/DIV  
50μs/DIV  
LOAD STEP = 100mA TO 700mA  
LOAD STEP = 100mA TO 700mA  
V
= 3.6V, V  
= 1.2V  
V
= 3.6V, V  
= 1.2V  
IN  
OUT1  
IN  
OUT1  
1A Buck Regulators,  
VOUT1 vs Temperature  
1A Buck Regulators, PMOS  
Current Limit vs Temperature  
1A Buck Regulators, Switch  
RDSON vs Temperature  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
PULSE-SKIPPING MODE  
LOAD = 500mA  
PMOS R  
, V = 2.7V  
DSON IN  
V
= 5.5V  
IN  
NMOS R , V = 2.7V  
DSON IN  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
V
= 5.5V  
IN  
V
= 3.6V  
IN  
NMOS R , V = 5.5V  
DSON IN  
PMOS R  
, V = 5.5V  
DSON IN  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3675 G14  
3675 G13  
3675 G15  
500mA Buck Regulators,  
Efficiency vs Load  
500mA Buck Regulators,  
Load Regulation  
500mA Buck Regulators,  
Line Regulation  
1.830  
1.825  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.830  
1.825  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
PULSE-SKIPPING MODE  
PULSE-SKIPPING MODE  
V
= 3.6V  
IN  
LOAD = 250mA  
LOAD = 50mA  
V
= 5.5V  
IN  
V
= 1.8V  
V
= 2.7V  
IN  
OUT3  
V
V
V
V
V
V
= 2.7V Burst Mode OPERATION  
= 3.6V Burst Mode OPERATION  
= 5.5V Burst Mode OPERATION  
= 2.7V PULSE SKIPPING-MODE  
= 3.6V PULSE SKIPPING-MODE  
= 5.5V PULSE SKIPPING-MODE  
IN  
IN  
IN  
IN  
IN  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
V
IN  
3675 G17  
3675 G16  
3675 G18  
3675fa  
9
LTC3675  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
500mA Buck Regulators No Load  
500mA Buck Regulators Transient  
Response (Pulse-Skipping Mode)  
500mA Buck Regulators Transient  
Response (Burst Mode Operation)  
Start-Up Transient  
(Pulse-Skipping Mode)  
V
= 3.6V  
IN  
V
V
OUT3  
OUT3  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
V
OUT3  
500mV/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
INDUCTOR  
CURRENT  
100mA/DIV  
INDUCTOR  
CURRENT  
100mA/DIV  
EN  
2V/DIV  
3675 G21  
3675 G20  
3675 G19  
25μs/DIV  
50μs/DIV  
50μs/DIV  
LOAD STEP = 50mA to 300mA  
LOAD STEP = 50mA to 300mA  
V
= 3.6V, V  
= 1.8V  
V
= 3.6V, V  
= 1.8V  
IN  
OUT3  
IN  
OUT3  
500mA Buck Regulators,  
VOUT3 vs Temperature  
500mA Buck Regulators, PMOS  
Current Limit vs Temperature  
500mA Buck Regulators, Switch  
RDSON vs Temperature  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
PULSE-SKIPPING MODE, LOAD = 250mA  
PMOS R  
, V = 2.7V  
DSON IN  
NMOS R  
, V = 2.7V  
DSON IN  
V
= 5.5V  
IN  
V
= 5.5V  
IN  
V
= 3.6V  
IN  
NMOS R , V = 5.5V  
DSON IN  
V
= 2.7V  
V
= 3.6V  
IN  
IN  
V
= 2.7V  
IN  
PMOS R  
, V = 5.5V  
DSON IN  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3675 G23  
3675 G24  
3675 G22  
Ganged Buck Regulators 1 and 2,  
Efficiency vs Load  
Boost Regulator,  
Efficiency vs Load  
Boost Regulator, Load Regulation  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PWM MODE  
V
= 3.6V, V  
= 1.2V  
OUT1  
IN  
V
= 4.2V  
IN  
V
= 3.6V  
IN  
Burst Mode OPERATION  
PULSE-SKIPPING MODE  
V
= 5V  
OUT5  
V
IN  
= 2.7V  
V
V
V
V
V
V
= 2.7V Burst Mode OPERATION  
= 3.6V Burst Mode OPERATION  
= 1.2V Burst Mode OPERATION  
= 2.7V PWM MODE  
IN  
IN  
IN  
IN  
IN  
IN  
= 3.6V PWM MODE  
= 4.2V PWM MODE  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3675 G27  
3675 G25  
3675 G26  
3675fa  
10  
LTC3675  
TYPICAL PERFORMANCE CHARACTERISTICS  
Boost Regulator Transient  
Response (PWM Mode)  
Boost Regulator, Line Regulation  
5.020  
5.016  
5.012  
5.008  
5.004  
5.000  
4.996  
4.992  
4.988  
4.984  
4.980  
PWM MODE  
V
OUT5  
100mV/DIV  
AC-COUPLED  
LOAD = 500mA  
LOAD = 100mA  
INDUCTOR  
CURRENT  
200mA/DIV  
3675 G29  
200μs/DIV  
LOAD STEP = 100mA to 600mA  
V
= 3.6V, V  
= 5V  
IN  
OUT5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
IN  
3675 G28  
Boost Regulator Transient  
Response (Burst Mode Operation)  
Boost Regulator, No Load  
Start-Up Transient, PWM Mode  
V
= 3.6V  
IN  
V
OUT5  
100mV/DIV  
AC-COUPLED  
V
OUT5  
2V/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
0mA  
3675 G31  
3675 G30  
50μs/DIV  
50μs/DIV  
LOAD STEP = 100mA to 600mA  
V
= 3.6V, V  
= 5V  
IN  
OUT5  
Boost Regulator,  
VOUT5 vs Temperature  
Boost Regulator, Forward Current  
Limit vs Temperature  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
PWM MODE, LOAD = 500mA  
V
= 3.6V  
IN  
V
= 3.6V  
V
IN  
= 4.2V  
IN  
V
= 2.7V  
IN  
V
= 2.7V  
IN  
V
= 4.2V  
IN  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3675 G32  
3675 G33  
3675fa  
11  
LTC3675  
TYPICAL PERFORMANCE CHARACTERISTICS  
Buck-Boost Regulator,  
Load Regulation  
Buck-Boost Regulator,  
Efficiency vs Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
PWM MODE  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
V
= 4.2V  
IN  
V
= 5.5V  
IN  
V
= 2.7V  
V
IN  
= 3.6V  
IN  
Burst Mode OPERATION  
PWM MODE  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3675 G34  
3675 G35  
Buck-Boost Regulator Transient  
Response (PWM Mode)  
Buck-Boost Regulator,  
Line Regulation  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
PWM MODE  
V
OUT6  
200mV/DIV  
AC-COUPLED  
LOAD = 500mA  
LOAD = 100mA  
INDUCTOR  
CURRENT  
200mA/DIV  
3675 G37  
200μs/DIV  
LOAD STEP = 100mA to 600mA  
V
= 3.6V, V  
= 3.3V  
IN  
OUT6  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
IN  
3675 G36  
Buck-Boost Regulator No Load  
Start-Up (PWM Mode)  
Buck-Boost Regulator, Reduction  
in Load Current Deliverability  
400  
350  
300  
250  
200  
150  
100  
50  
PWM MODE  
V
= 3.6V  
IN  
V
= 3.3V  
OUT6  
V
OUT6  
1V/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
EN6  
2V/DIV  
3675 G38  
100μs/DIV  
0
2.7  
3
3.3  
V
3.6  
(V)  
3.9  
4.2  
IN  
3675 G39  
3675fa  
12  
LTC3675  
TYPICAL PERFORMANCE CHARACTERISTICS  
Buck-Boost Regulator,  
VOUT6 vs Temperature  
Buck-Boost Regulator, Forward  
Current Limit vs Temperature  
Buck-Boost Regulator, Switch  
RDSON vs Temperature  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
PWM MODE, LOAD = 500mA  
NMOS R , V = 2.7V  
DSON IN  
V
= 5.5V  
IN  
V = 2.7V  
IN  
PMOS R  
, V = 2.7V  
DSON IN  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
PMOS R , V = 4.2V  
DSON IN  
V
= 4.2V  
IN  
NMOS R , V = 4.2V  
DSON IN  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3675 G42  
3675 G41  
3675 G40  
LED Driver, Dual String Efficiency,  
10 LEDs per String  
LED Driver, Dual String Efficiency,  
4 LEDs per String  
LED Driver, Forward Current Limit  
vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.2V  
IN  
V
= 4.2V  
IN  
V
= 2.7V  
IN  
V
IN  
= 3.6V  
V
= 2.7V  
IN  
V
= 2.7V  
IN  
V
IN  
= 5.5V  
R
= 20kΩ  
R
= 20kΩ  
LED_FS  
LED_FS  
1
10  
100  
1000  
–55 –35 –15  
5
25 45 65 85 105 125  
1
10  
100  
1000  
DAC CODE (DECIMAL)  
TEMPERATURE (°C)  
DAC CODE (DECIMAL)  
3675 G43  
3675 G45  
3675 G44  
LED Driver, LED Current  
vs Temperature  
High Voltage Boost Regulator,  
Efficiency vs Load  
Always-On LDO, Load Regulation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
10.25  
10.20  
10.15  
10.10  
10.05  
10.00  
9.95  
SINGLE LED STRING CURRENT  
MODE0 = MODE1 = 0  
V
= 5.5V  
IN  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
V
= 3.6V  
V
= 5.5V  
IN  
IN  
V
= 5.5V  
IN  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
9.90  
9.85  
MODE1 = 1, MODE0 = 0  
= 12V  
9.80  
V
OUT  
9.75  
1
10  
100  
1000  
0.1  
1
10  
100  
–55 –35 –15  
5
25 45 65 85 105 125  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
3675 G47  
3675 G48  
3675 G46  
3675fa  
13  
LTC3675  
PIN FUNCTIONS  
EN1 (Pin 1): Buck Regulator 1 Enable Input. Active high.  
EN4 (Pin 13): Buck Regulator 4 Enable Input. Active high.  
FB1 (Pin 2): Buck Regulator 1 Feedback Pin. Receives  
FB4 (Pin 14): Buck Regulator 4 Feedback Pin. Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
feedbackbyaresistordividerconnectedacrosstheoutput.  
Connecting FB4 to V combines buck regulator 4 with  
IN  
FB2 (Pin 3): Buck Regulator 2 Feedback Pin. Receives  
buck regulator 3 for higher current.  
feedbackbyaresistordividerconnectedacrosstheoutput.  
Connecting FB2 to V combines buck regulator 2 with  
FB3 (Pin 15): Buck Regulator 3 Feedback Pin. Receives  
IN  
buck regulator 1 for higher current.  
feedbackbyaresistordividerconnectedacrosstheoutput.  
Connecting FB3 to V combines buck regulator 3 with  
IN  
EN2 (Pin 4): Buck Regulator 2 Enable Input. Active high.  
buck regulator 2 for higher current.  
SW1 (Pin 5): Buck Regulator 1 Switch Node. External  
inductor connects to this pin.  
LED_OV(Pin16):OvervoltageProtectionPinforLEDDriver.  
LED1(Pin17):Connectastringofupto10LEDstothispin.  
V (Pin 6): Buck Regulator 1 Input Supply. A 10μF decou-  
IN  
plingcapacitortoGNDisrecommended.Mustbeconnected  
SW7 (Pins 18, 19, 20): LED Driver Switch Node. External  
inductor connects to these pins.  
to all other V supply pins (Pins 7, 10, 31, 34, 40).  
IN  
V (Pin 7): Buck Regulator 2 Input Supply. A 10μF decou-  
LED2(Pin21):Connectastringofupto10LEDstothispin.  
IN  
plingcapacitortoGNDisrecommended.Mustbeconnected  
CT (Pin 22): Timing Capacitor Pin. A capacitor connected  
to GND sets a time constant which is scaled for use by  
the WAKE, RSTB and IRQB pins.  
to all other V supply pins (Pins 6, 10, 31, 34, 40).  
IN  
SW2 (Pin 8): Buck Regulator 2 Switch Node. External  
inductor connects to this pin.  
RSTB (Pin 23): Reset Pin. Open drain output. When the  
regulatedoutputvoltageofanyenabledswitchingregulator  
is more than 8% below its programmed level, this pin is  
SW3 (Pin 9): Buck Regulator 3 Switch Node. External  
inductor connects to this pin.  
driven LOW. Assertion delay is scaled by the C capacitor.  
T
V
(Pin 10): Buck Regulators 3 and 4 Input Supply. A  
IN  
10μF decoupling capacitor to GND is recommended.  
IRQB (Pin 24): Interrupt Pin. Open drain output. When  
undervoltage, overtemperature, or an unmasked error  
condition is detected, this pin is driven LOW.  
Must be connected to all other V supply pins (Pins 6,  
7, 31, 34, 40).  
IN  
SW4 (Pin 11): Buck Regulator 4 Switch Node. External  
PBSTAT (Pin 25): Pushbutton Status Pin. Open drain  
output. This pin provides a debounced and glitch free  
status of the ONB pin.  
inductor connects to this pin.  
EN3 (Pin 12): Buck Regulator 3 Enable Input. Active high.  
3675fa  
14  
LTC3675  
PIN FUNCTIONS  
FB5 (Pin 35): Boost Regulator Feedback Pin. Receives  
WAKE (Pin 26): Open Drain Output. When the ONB pin  
is pressed and released, the signal is debounced and the  
WAKE signal is held HIGH for a minimum time period that  
feedbackbyaresistordividerconnectedacrosstheoutput.  
FB6(Pin36):Buck-BoostRegulatorFeedbackPin.Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
is scaled by the C capacitor.  
T
LED_FS (Pin 27): A resistor connected from this pin to  
GND programs full-scale LED current.  
ENBB (Pin 37): Buck-Boost Regulator Enable Input. Ac-  
tive high.  
ONB (Pin 28): Pushbutton Input. Active low.  
SWAB6 (Pin 38): Buck-Boost Regulator Switch Pin. Ex-  
ternal inductor connects to this pin and SWCD6.  
LDOFB (Pin 29): LDO Feedback Pin. A resistor divider  
from LDO_OUT to GND provides feedback.  
2
SCL (Pin 39): Clock Line for I C Port.  
LDO_OUT (Pin 30): Output of Always-On LDO. Decouple  
V (Pin 40): Buck-Boost Regulator Input Supply. A 10μF  
IN  
with a 10μF capacitor to GND.  
decoupling capacitor to GND is recommended. Must be  
connectedtoallotherV supplypins(Pins6,7,10,31,34).  
V
(Pin 31): Quiet Input Supply Used to Power Non-  
IN  
IN  
Switching Control Circuitry. A 2.2μF decoupling capacitor  
2
DV (Pin 41): Supply Pin for I C Port.  
CC  
to GND is recommended. Must be connected to all other  
V supply pins (Pins 6, 7, 10, 34, 40).  
V
(Pins 42): Buck-Boost Regulator Output. Connect  
OUT6  
IN  
a 22μF capacitor to GND.  
SW5 (Pin 32): Boost Regulator Switch Node. External  
inductor connects to this pin.  
2
SDA (Pin 43): Serial Data Line for I C Port. Open drain  
output during readback.  
V
(Pin 33): Boost Regulator Output. Connect two  
OUT5  
SWCD6 (Pin 44): Buck-Boost Regulator Switch Pin. Ex-  
ternal inductor connects to this pin and SWAB6.  
22μF capacitors to GND.  
V
(Pin 34): Quiet Input Supply Used to Power Non-  
IN  
GND (Exposed Pad Pin 45): Ground for Entire Chip. Must  
be soldered to PCB for electrical contact and rated thermal  
performance.  
Switching Control Circuitry. A 2.2μF decoupling capacitor  
to GND is recommended. Must be connected to all other  
V supply pins (Pins 6, 7, 10, 31, 40).  
IN  
3675fa  
15  
LTC3675  
BLOCK DIAGRAM  
34  
33  
32  
35  
V
V
IN  
V
IN  
OUT5  
BOOST REGULATOR  
SW5  
FB5  
V
6
5
2
1
IN  
BUCK-BOOST REGULATOR  
SW1  
FB1  
40  
42  
V
V
IN  
BUCK REGULATOR 1  
1A  
A
D
OUT6  
EN1  
MODULATION  
CONTROL  
SWAB6  
38  
B
MASTER/SLAVE LINES  
44 SWCD6  
C
V
7
8
3
4
IN  
SW2  
FB2  
FB6  
36  
BUCK REGULATOR 2  
1A  
V
REF, CLK  
IN  
37 ENBB  
EN2  
17  
21  
LED1  
LED2  
SW7  
BANDGAP,  
OSCILLATOR,  
UV, OT  
MASTER/SLAVE LINES  
MODULATION  
CONTROL  
18,19,  
20  
LED_FS  
LED_OV  
27  
16  
31  
SW3  
FB3  
9
LED DRIVER  
BUCK REGULATOR 3  
500mA  
15  
12  
V
IN  
V
LDO  
+
IN  
EN3  
30 LDO_OUT  
MASTER/SLAVE LINES  
V
10  
IN  
LDOFB  
29  
41  
DAC BITS, SLEW CONTROL,  
GRADATION, STATUS BITS  
DV  
CC  
TOP LOGIC,  
CT OSCILLATOR,  
TIMING  
2
11  
14  
13  
SW4  
FB4  
I C  
39 SCL  
SDA  
BUCK REGULATOR 4  
500mA  
43  
EN4  
23 RSTB  
24 IRQB  
25  
26  
22  
28  
PBSTAT  
WAKE  
CT  
ONB  
GND  
45  
3675 BD  
3675fa  
16  
LTC3675  
OPERATION  
The LTC3675 has six monolithic synchronous switching  
regulatorsandadualstringboostLEDdriverandisdesigned  
to operate from a single Li-Ion battery. All of the switching  
regulators and the LED driver are internally compensated  
and need only external feedback resistors for regulation.  
The switching regulators also offer two operating modes:  
Burst Mode operation for higher efficiency at light loads  
and pulse-skipping/PWM mode. In Burst Mode operation  
at light loads, the output capacitor is charged to a voltage  
slightly higher than its regulation point. The regulator then  
goesintosleep,duringwhichtheoutputcapacitorprovides  
the load current. In sleep most of the regulator’s circuitry  
is powered down, helping conserve battery power. When  
the output capacitor droops below its programmed value,  
thecircuitryispoweredonandanotherburstcyclebegins.  
The sleep time decreases as load current increases.  
The buck regulators can operate in either of two modes. In  
pulse-skippingmode, theregulatorwillskippulsesatlight  
loads but will operate at a constant frequency of 2.25MHz  
athigherloads. InBurstModeoperation, theregulatorwill  
burst at light loads whereas at higher loads it will operate  
at constant frequency PWM mode of operation, much the  
same as pulse-skipping mode at high load. In shutdown,  
2
an I C control bit provides the flexibility to either keep the  
SW node in a high impedance state or pull the SW node  
to GND through a 10k resistor.  
The buck regulators have forward and reverse current  
limiting, soft-start to limit inrush current during start-up,  
short-circuit protection and slew rate control for lower  
radiated EMI.  
Each buck regulator may be enabled via its enable pin or  
2
I C. The mode of operation, the feedback regulation volt-  
2
AllswitchingregulatorsandLEDdrivermaybeconfigured  
age and switch slew rate can all be controlled via I C. For  
2
via I C, providing the user with the flexibility to operate the  
applications that require higher power, buck regulators  
may be combined together.  
2
LTC3675 in the most efficient manner. I C commands can  
2
also be read back via the I C port, to ensure a command  
was not corrupted during a transmission.  
BUCK REGULATORS WITH COMBINED POWER STAGES  
2
All the regulators can be enabled via I C commands. The  
Two adjacent buck regulators may be combined in a  
master-slave configuration by connecting their SW pins  
together and connecting the higher numbered buck’s FB  
pintotheinputsupply.Thelowernumberedbuckisalways  
the master. In Figure 1, buck regulator 1 is the master. The  
feedback network connected to the FB1 pin programs the  
buck regulators and the buck-boost regulator may also be  
enabledviaenablepins. Theenablepinshavetwodifferent  
enablethresholdvoltagesthatdependontheoperatingstate  
oftheLTC3675.Withallregulatorsdisabled,theenablepin  
threshold is at 650mV. If any regulator is enabled either  
2
by its enable pin or an I C command, then the enable pin  
thresholds are at 400mV. A precision comparator detects  
a voltage greater than 400mV on the enable pin and turns  
that regulator on. This precision threshold may be used to  
sequentiallyenableregulators.Ifallregulatorsaredisabled,  
all the command registers are set in their default state.  
V
IN  
L1  
1.2V  
2A  
OUT  
SW1  
V
C
BUCK REGULATOR 1  
(MASTER)  
OUT  
400k  
800k  
EN1  
FB1  
There are also 2 bytes of data that report any fault condi-  
2
tions on the LTC3675 via I C read back.  
V
IN  
SW2  
BUCK SWITCHING REGULATOR  
V
IN  
BUCK REGULATOR 2  
(SLAVE)  
The LTC3675 contains four buck regulators. Two of the  
buck regulators are designed to deliver up to 1A load  
current each while the other two regulators can deliver  
up to 500mA each.  
EN2  
FB2  
3675 F01  
Figure 1. Buck Regulators Configured as Master-Slave  
3675fa  
17  
LTC3675  
OPERATION  
output voltage to 1.2V. The FB2 pin is tied to V , which  
The buck-boost regulator can operate in either PWM  
mode or in Burst Mode operation. The PWM operating  
mode provides a low noise solution. For light loads, Burst  
Modeoperationoffersimprovedefficiency.Thebuck-boost  
regulator has forward current limiting, soft-start to limit  
inrush current during start-up, short-circuit protection  
and slew rate control for lower radiated EMI.  
IN  
configures buck regulator 2 as the slave. The SW1 and  
SW2 pins must be tied together. The register contents of  
themasterprogramthecombinedbuckregulator’sbehavior  
andtheregistercontentsoftheslaveareignored.Theslave  
buck control circuitry draws no current. The enable of the  
masterbuck(EN1)controlstheoperationofthecombined  
bucks, the enable of the slave regulator (EN2) is ignored.  
When the output voltage is below 2.65V (typical) during  
start-up, Burst Mode operation is disabled and switch D is  
turned off. The forward current is carried by the switch D  
well diode and there is no reverse current flowing in this  
condition. In shutdown, an internal 10k resistor pulls the  
output to GND.  
Buck regulators 2 and 3 may be configured as combined  
buck regulators capable of delivering up to 1.5A load  
current with buck regulator 2 being the master. Buck  
regulators 3 and 4 may be configured as combined buck  
regulators capable of delivering up to 1A load current with  
buck regulator 3 being the master.  
LED DRIVER  
BOOST SWITCHING REGULATOR  
The LED driver uses a constant frequency, current mode  
boost converter to supply power to up to two strings of 10  
series LEDs. The series string of LEDs is connected from  
the output of the boost converter to an LED pin. The LED  
pin is a programmable constant current sink. The boost  
converter will regulate its output to force the LED pin to  
300mV. The percentage of full-scale current sunk by the  
The boost regulator is capable of delivering up to 1A load  
current for a programmed output voltage of up to 5V. The  
2
boost regulator may be enabled only via I C. The mode  
of operation, feedback regulation voltage and switch slew  
2
rate can all be controlled via I C.  
The boost regulator can operate in either PWM mode or  
in Burst Mode operation. In PWM operating mode, the  
regulator operates at a constant frequency of 2.25MHz  
and provides a low noise solution. For light loads, Burst  
Mode operation offers improved efficiency. The boost  
regulator has forward and reverse current limiting, soft-  
start to limit inrush current during start-up, short-circuit  
protection and slew rate control for lower radiated EMI.  
The boost regulator also features true output disconnect  
when in shutdown. In shutdown, an internal 10k resistor  
pulls the output to GND.  
2
LED pin is programmed via I C.  
The LED boost converter is designed for very high duty  
cycle operation and can boost from below 3V to 40V out  
at up to 55mA. The LED boost also features an overvolt-  
age protection feature to limit the output voltage in case  
of an open circuit in an LED string. The boost converter  
will operate in either continuous conduction mode, dis-  
continuous conduction mode or pulse-skipping mode  
depending on the inductor current required for regulation.  
The boost converter may also be configured to operate  
2
as an independent high voltage boost regulator via I C.  
BUCK-BOOST SWITCHING REGULATOR  
The LED driver may also be configured as a single string  
LED driver. When driving a single string, LED1 and LED2  
should be tied together.  
The buck-boost regulator is a 2.25MHz voltage mode  
regulator.Thebuck-boostregulatoriscapableofdelivering  
up to 1A load current for a programmed output voltage of  
3.3V. The regulator can be enabled via its enable pin or via  
The LED driver features a fully automatic gradation circuit.  
This circuit allows the current to ramp up or down at a  
controlledratebetweenanytwocurrentlevels.Onpower-up  
the LED DAC register is set to 0. To enable the LED driver  
a non-zero value must be programmed into this register.  
2
I C. The mode of operation, feedback regulation voltage  
2
and switch slew rate can all be controlled via I C.  
3675fa  
18  
LTC3675  
OPERATION  
All PB timing parameters are scaled using the CT pin.  
The gradation circuit will then ramp the current to the  
programmed value at a rate determined by the gradation  
rate bits. Once the LED driver reaches this value it will  
regulate that current until programmed otherwise. If a  
new value is programmed in the LED brightness register,  
the LED driver’s current will ramp up or down at the pro-  
grammed rate until that current is reached. To disable the  
LED driver, a code of zero is programmed in the LED DAC  
register. The gradation circuit will then ramp the current  
down at the programmed rate. Once the current reaches  
zero the gradation circuit will disable the boost and the  
entire LED driver will enter shutdown mode.  
Times described below apply to a nominal C of 0.01μF.  
T
The LTC3675 is in an off state when it is powered up with  
all regulators in shutdown. The WAKE pin is LOW in the off  
state. The WAKE pin will go HIGH either if ONB is pulled  
LOW for 400ms or a regulator is enabled via its enable  
2
pin or an I C command. The WAKE pin stays in its HIGH  
state for 5 seconds and then gets pulled low. WAKE will  
not go HIGH again if a second regulator is subsequently  
enabled. The LTC3675 is in an on state if either the WAKE  
pin is HIGH or a regulator is enabled.  
The PBSTAT pin reflects the status of the ONB when  
the LTC3675 is in an on state. Once in the on state, the  
LTC3675 can be powered down by holding ONB LOW for  
at least 5 seconds. All enabled regulators will be turned  
off for 1 second and the contents of the program registers  
areresettotheirdefaultstate. Thismannerofpower-down  
is called a hard reset. A hard reset may also be generated  
The LED driver is protected by the LED_OV pin. This pin  
acts as a secondary feedback path that limits the voltage  
on the output capacitor. A feedback divider is placed from  
the LED boost’s output to the LED_OV pin. Values for this  
divider are selected to limit the output voltage similarly to  
the feedback dividers discussed in “Switching Regulator  
OutputVoltageandFeedbackNetworkintheApplications  
Information section. The LED driver begins to transition  
to LED_OV control at 800mV and is fully controlled by  
the LED_OV pin by 825mV. During this transition the LED  
pins will begin to drop out of regulation. For this reason  
during normal operation the voltage on this pin should be  
kept below 800mV.  
2
by using an I C command.  
POWER-UP AND POWER-DOWN VIA PUSHBUTTON  
The LTC3675 may be turned on and off using the WAKE  
pin as shown in Figures 2a and 2b. In Figures 2a and 2b,  
pressing ONB low at time t , causes the WAKE pin to go  
1
high at time t and stay high for 5 seconds, after which  
2
The LED driver is also designed to limit the maximum volt-  
age on the LED1 and LED2 pins to no more than 8V. The  
boost regulates the minimum voltage on either LED pin.  
If one of the LED pins is shorted to ground the boost will  
only drive the other LED pin up to the voltage clamp, or  
the LED_OV voltage, whichever is lower. If one LED string  
is shorted, or partially shorted, this clamp will prevent the  
boost from damaging the LED pin.  
WAKE is pulled low. WAKE going HIGH at t causes buck  
2
regulator 1 to power up, which sequentially powers up  
the other buck regulators. The RSTB pin gets pulled HIGH  
200ms after the last enabled buck is in its PGOOD state.  
An application showing sequential regulator start-up is  
shown in the Typical Applications section (Figure 7).  
2
If an I C command is written before the 5 second WAKE  
period t to keep the buck regulators enabled, the regula-  
3
tors stay enabled as shown in Figure 2b. Otherwise, when  
PUSHBUTTON INTERFACE AND POWER-UP POWER-  
DOWN SEQUENCING  
WAKE gets pulled low at t , the buck regulators will also  
3
power down sequentially as shown in Figure 2a.  
The LTC3675 provides pushbutton functionality to either  
power up or power down the part. The ONB, WAKE and  
PBSTAT pins provide the user with flexibility to power up  
In Figure 2b, ONB is held LOW at instant t for 5 seconds.  
4
This causes a hard reset to be generated and at t , all  
5
2
regulators are powered down.  
or power down the part in addition to having I C control.  
3675fa  
19  
LTC3675  
OPERATION  
ONB  
5 sec  
WAKE  
(TIED TO EN1)  
PBSTAT  
(Hi-Z)  
SEQUENCE UP  
SEQUENCE DOWN  
BUCKS 1–4  
RSTB  
3675 F02a  
t
t
2
t
3
(BUCK REGULATOR’S ENABLE IS NOT  
2
1
REINFORCED BY I C BEFORE t )  
3
Figure 2a. Power-Up Using WAKE (Sequenced Power-Up, Figure 7)  
ONB  
5 sec  
WAKE  
PBSTAT  
SEQUENCE UP  
BUCKS 1–4  
RSTB  
3675 F02b  
t
t
2
t
t
t
5
1
3
4
(BUCK REGULATOR 1 IS  
2
ENABLED VIA I C, BEFORE t )  
3
Figure 2b. Power-Up Using WAKE and Power-Down Due to Hard Reset (Sequenced Power-Up, Figure 7)  
ONB  
(Hi-Z)  
WAKE  
PBSTAT  
(Hi-Z)  
EN1  
BUCK 1  
3675 F02c  
RSTB  
t
t
2
t
3
t
4
1
Figure 2c. Power-Up Using an Enable Pin and Power-Down Due to I2C Generated Hard Reset  
3675fa  
20  
LTC3675  
OPERATION  
POWER-UP AND POWER-DOWN VIA ENABLE PIN OR I C  
2
code of 64h will result in a LED current of 19.6mA and  
a full-scale setting of FFh will result in an LED current of  
50mA. The 2xFS mode is only intended for use when the  
output voltage is below 20V.  
WiththeLTC3675initsoffstate,aregulatorcanbeenabled  
2
eitherviaitsenablepinorI C.InFigure2c,buckregulator1  
is enabled via its enable pin at time t . The WAKE pin goes  
1
HIGH for 5 seconds and at t is pulled LOW. The buck  
2
2
I C INTERFACE  
regulator stays enabled until time t when a hard reset  
3
2
command is issued via I C. The buck regulator powers  
The LTC3675 may communicate with a bus master using  
2
down and stays off for 1 second. At time t , the LTC3675  
4
the standard I C 2-wire interface. The timing diagram  
exits from the power down state. Since the buck regula-  
tor 1 is still enabled via its enable pin, it powers back up.  
WAKE also gets pulled HIGH for 5 seconds. The RSTB  
pin gets pulled HIGH 200ms after the buck regulator 1 is  
in its PGOOD state.  
(Figure 3) shows the relationship of the signals on the  
bus. The two bus lines, SDA and SCL, must be high when  
the bus is not in use. External pull-up resistors or cur-  
rent sources, such as the LTC1694 SMBus accelerator,  
are required on these lines. The LTC3675 is both a slave  
2
receiver and slave transmitter. The I C control signals,  
SDA and SCL are scaled internally to the DV supply.  
LED CURRENT PROGRAMMING  
CC  
DV should be connected to the same power supply as  
CC  
The LED current is primarily controlled through the LED  
the bus pull-up resistors.  
2
DAC register at I C sub-address 8. This register controls  
2
The I C port has an undervoltage lockout on the DV pin.  
an 8 bit current DAC. A 20k resistor placed between the  
LED_FS pin and ground provides a current reference for  
theDACwhichresultsin9AofprogrammedLEDcurrent  
per LSB. For example, programming a LED DAC register  
code of 64h will result in a LED current of 9.8mA and a  
full-scalesettingofFFhwillresultinaLEDcurrentof25mA.  
CC  
2
When DV is below 1V, the I C serial port is cleared and  
theLTC3675registersaresettotheirdefaultconfigurations.  
CC  
2
I C Bus Speed  
2
The I C port is designed to be operated at speeds of up  
to 400kHz. It has built-in timing delays to ensure correct  
The 2xFS bit which is bit 3 of the LED configuration reg-  
isteratsub-address7effectivelydoublestheprogrammed  
LED current. With a 20k resistor from LED_FS to ground  
each LSB will be 196μA. Programming a LED DAC register  
2
operation when addressed from an I C compliant master  
device. It also contains input filters designed to suppress  
glitches should the bus become corrupted.  
DATA BYTE A  
DATA BYTE B  
ADDRESS  
WR  
0
0
0
0
1
1
0
0
0
1
1
A7  
A6  
A5  
A4  
A3  
A2  
6
A1  
7
A0  
8
B7  
1
B6  
2
B5  
3
B4  
B3  
B2  
6
B1  
7
B0  
8
START  
STOP  
SDA  
SCL  
0
0
0
0
0
8
ACK  
9
ACK  
9
ACK  
9
1
2
3
4
5
6
7
1
2
3
4
5
4
5
SDA  
t
t
t
BUF  
SU, DAT  
SU, STA  
t
t
t
t
LOW  
HD, STA  
SU, STO  
HD, DAT  
3675 F03  
SCL  
t
t
t
SP  
HD, STA  
HIGH  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
t
r
t
f
Figure 3. I2C Bus Operation  
3675fa  
21  
LTC3675  
OPERATION  
I C Start and Stop Conditions  
2
2
I C Slave Address  
A bus master signals the beginning of communications  
by transmitting a START condition. A START condition is  
generated by transitioning SDA from HIGH to LOW while  
SCL is HIGH. The master may transmit either the slave  
write or the slave read address. Once data is written to the  
LTC3675,themastermaytransmitaSTOPconditionwhich  
commands the LTC3675 to act upon its new command  
set. A STOP condition is sent by the master by transition-  
ing SDA from LOW to HIGH while SCL is HIGH. The bus  
The LTC3675 responds to a 7-bit address which has been  
factory programmed to b’0001001[R/WB]’. The LSB of  
the address byte, known as the read/write bit, should be  
0 when writing data to the LTC3675 and 1 when reading  
data from it. Considering the address as an 8-bit word,  
the write address is 12h and the read address is 13h. The  
LTC3675willacknowledgebothitsreadandwriteaddress.  
2
I C Sub-Addressed Writing  
2
is then free for communication with another I C device.  
The LTC3675 has twelve command registers for control  
2
input.TheyareaccessedbytheI Cportviaasub-addressed  
2
I C Byte Format  
writing system.  
Each byte sent to or received from the LTC3675 must  
be 8 bits long followed by an extra clock cycle for the  
acknowledge bit. The data should be sent to the LTC3675  
most significant bit (MSB) first.  
AsinglewritecycleoftheLTC3675consistsofexactlythree  
bytes except when a clear interrupt command is written.  
The first byte is always the LTC3675’s write address. The  
second byte represents the LTC3675’s sub-address. The  
sub-address is a pointer which directs the subsequent  
data byte within the LTC3675. The third byte consists of  
the data to be written to the location pointed to by the  
sub-address. The LTC3675 contains 11 control registers  
which can be written to.  
2
I C Acknowledge  
The acknowledge signal is used for handshaking between  
the master and the slave. When the LTC3675 is written  
to (write address), it acknowledges its write address as  
well as the subsequent two data bytes. When it is read  
from (read address), the LTC3675 acknowledges its read  
address only. The bus master should acknowledge receipt  
of information from the LTC3675.  
2
I C Bus Write Operation  
The master initiates communication with the LTC3675  
with a START condition and the LTC3675’s write address.  
If the address matches that of the LTC3675, the LTC3675  
returns an acknowledge. The master should then deliver  
the sub-address. Again the LTC3675 acknowledges and  
the cycle is repeated for the data byte. The data byte is  
transferred to an internal holding latch upon the return  
of its acknowledge by the LTC3675. This procedure must  
be repeated for each sub-address that requires new data.  
After one or more cycles of [ADDRESS][SUB-ADDRESS]  
[DATA], the master may terminate the communication  
with a STOP condition. Multiple sub addresses may be  
written to with a single address command using a [AD-  
DRESS][SUB-ADDRESS][DATA][SUB-ADDRESS][DATA]  
sequence.Alternatively,aREPEAT-STARTconditioncanbe  
An acknowledge (active LOW) generated by the LTC3675  
letsthemasterknowthatthelatestbyteofinformationwas  
received.Theacknowledgerelatedclockpulseisgenerated  
by the master. The master releases the SDA line (HIGH)  
during the acknowledge clock cycle. The LTC3675 pulls  
down the SDA line during the write acknowledge clock  
pulse so that it is a stable LOW during the HIGH period  
of this clock pulse.  
When the LTC3675 is read from, it releases the SDA line  
so that the master may acknowledge receipt of the data.  
Since the LTC3675 only transmits one byte of data during  
a read cycle, a master not acknowledging the data sent  
2
by the LTC3675 has no I C specific consequence on the  
2
2
initiated by the master and another chip on the I C bus can  
operation of the I C port.  
be addressed. This cycle can continue indefinitely and the  
LTC3675 will remember the last input of valid data that it  
3675fa  
22  
LTC3675  
OPERATION  
Table 1. Summary of I2C Sub-Addresses and Byte Formats. Bits A7, A6, A5, A4 of Sub-Address Need to Be 0 to Access Registers  
SUB-ADDRESS  
OPER-  
BYTE FORMAT  
D7D6D5D4D3D2D1D0  
DEFAULT  
D7D6D5D4D3D2D1D0 COMMENTS  
A7A6A5A4A3A2A1A0 ATION ACTION  
0000 0000 (00h)  
0000 0001 (01h)  
0000 0010 (02h)  
0000 0011 (03h)  
0000 0100 (04h)  
0000 0101 (05h)  
0000 0110 (06h)  
0000 0111 (07h)  
Write No Register  
Selected  
Used in the Clear Interrupt  
Operation.  
Read/ Buck1 Register Enable, OUT_Hi-Z, Mode, Slow, DAC[3],  
Write DAC[2], DAC[1], DAC[0]  
Read/ Buck2 Register Enable, OUT_Hi-Z, Mode, Slow, DAC[3],  
Write DAC[2], DAC[1], DAC[0]  
Read/ Buck3 Register Enable, OUT_Hi-Z, Mode, Slow, DAC[3],  
Write DAC[2], DAC[1], DAC[0]  
Read/ Buck4 Register Enable, OUT_Hi-Z, Mode, Slow, DAC[3],  
Write  
Read/ Boost Register  
Write  
Read/ Buck-Boost  
Write Register  
01101111  
01101111  
01101111  
01101111  
00001111  
00001111  
00001111  
DAC[2], DAC[1], DAC[0]  
Enable, Unused, Mode, Slow, DAC[3],  
DAC[2], DAC[1], DAC[0]  
Enable, Unused, Mode, Slow, DAC[3],  
DAC[2], DAC[1], DAC[0]  
Unused, Mode[1], Mode[0], Slow, 2XFS,  
GRAD[2], GRAD[1], GRAD[0]  
Read/ LED  
Write Configuration  
Register  
0000 1000 (08h)  
0000 1001 (09h)  
0000 1010 (0Ah)  
0000 1011 (0Bh)  
0000 1100 (0Ch)  
0000 1101 (0Dh)  
0000 1111 (0Fh)  
Read/ LED DAC  
Write Register  
Read/ UVOT Register  
Write  
Read/ RSTB Mask  
Write Register  
Read/ IRQB Mask  
Write Register  
Read Status Register UNUSED, UNUSED, PGOOD[6], PGOOD[5],  
(Real Time) PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]  
Read Status Register UV, OT, PGOOD[6], PGOOD[5], PGOOD[4],  
(Latched)  
Write Clear Interrupt  
DAC[7], DAC[6], DAC[5], DAC[4], DAC[3],  
DAC[2], DAC[1], DAC[0]  
RESET_ALL, UV[2], UV[1], UV[0], UNUSED, 00000000  
UNUSED, OT[1], OT[0]  
UNUSED, PGOOD[7], PGOOD[6], PGOOD[5], 11111111  
PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]  
UNUSED, PGOOD[7], PGOOD[6], PGOOD[5], 00000000  
PGOOD[4], PGOOD[3], PGOOD[2], PGOOD[1]  
00000000  
00000000 = LED Driver Disabled  
11111111 = 25mA per String  
Fault will pull RSTB low if the  
corresponding bit is ‘1’  
Fault will pull IRQB low if the  
corresponding bit is ‘1’  
Read Back  
Read Back  
PGOOD[3], PGOOD[2], PGOOD[1]  
Clears the Interrupt Bit,  
Status Latches are Unlatched  
2
received. Once all chips on the bus have been addressed  
and sent valid data, a global STOP can be sent and the  
LTC3675 will update its command latches with the data  
that it had received.  
I C Bus Read Operation  
The LTC3675 has eleven command registers and two  
status registers. The contents of any of these registers  
may be read back via I C.  
2
It is important to understand that until a STOP signal is  
transmitted, data written to the LTC3675 command reg-  
isters is not acted on by the LTC3675. Only once a STOP  
signal is issued is the data transferred to the command  
latchandactedon.Theoneexceptioniswhensub-address  
0Fh is written to clear an interrupt. To clear an interrupt,  
subaddressOFhmustbewritten, followedbysubaddress  
00h. A complete clear interrupt cycle would have the fol-  
lowing write sequence: 12h, 0Fh, STOP, 12h, 00h, STOP.  
To read the data of a register, that register’s sub-address  
must be provided to the LTC3675. The bus master reads  
thestatusoftheLTC3675withaSTARTconditionfollowed  
by the LTC3675 write address followed by the first data  
byte (the sub-address of the register whose data needs  
to be read) which is acknowledged by the LTC3675. After  
receiving the acknowledge signal from the LTC3675 the  
bus master initiates a new START condition followed by  
the LTC3675 read address. The LTC3675 acknowledges  
the read address and then returns a byte of read back  
3675fa  
23  
LTC3675  
OPERATION  
RSTB MASK REGISTER  
V
IN  
EXTERNAL PULL-UP RESISTOR  
RSTB  
OTHER UNMASKED  
PGOOD OUTPUTS  
V
OUT  
AND1  
REGULATOR  
UNMASKED  
PGOOD OUTPUTS  
V
IN  
PGOOD  
COMPARATOR  
EXTERNAL PULL-UP RESISTOR  
IRQB  
+
UNMASKED  
ERROR  
AND2  
92% OF PROGRAMMED V  
OUT  
SET  
CLR  
OTHER UNMASKED  
ERRORS  
CLRINT  
LATCHED STATUS REGISTER  
REAL TIME STATUS REGISTER  
IRQB MASK REGISTER  
3675 F04  
Figure 4. Simplified Schematic Showing RSTB and IRQB Signal Path  
data from the selected register. A STOP command is not  
required for the bus read operation.  
IfthatPGOODisnotmaskedandstayslowforgreaterthan  
50μs, then it pulls the RSTB and IRQB pins low, indicating  
to a microprocessor that an error condition has occurred.  
The 50μs filter time prevents the pins from being pulled  
low due to a transient.  
Immediately after writing data to a register, the contents  
of that register may be read back if the bus master issues  
a START condition followed by the LTC3675 read address.  
The LED driver has a PGOOD signal (PGOOD[7]) that  
is used to indicate output voltage status only when it is  
configured as a high voltage boost regulator. In all other  
operating modes, PGOOD[7] is disabled.  
ERROR CONDITION REPORTING VIA  
RSTB AND IRQB PINS  
Error conditions are reported back via the IRQB and RSTB  
pins. After an error condition is detected, status data can  
be read back to a microprocessor via I C to determine the  
exact nature of the error condition.  
An error condition that pulls the RSTB pin low is not  
latched. When the error condition goes away, the RSTB  
pin is released and is pulled high if no other error condi-  
tion exists.  
2
Figure 4 is a simplified schematic showing the signal path  
for reporting errors via the RSTB and IRQB pins.  
In addition to the PGOOD signals of the regulators, the  
IRQB pin also indicates the status of the overtemperature  
and undervoltage flags. The undervoltage and overtem-  
perature faults cannot be masked. A fault that causes  
the IRQB pin to be pulled low is latched. When the fault  
condition is cleared, the IRQB pin is still maintained in its  
low state. The user needs to clear the interrupt by using  
a CLRINT command.  
All the switching regulators and the LED driver have an  
internal power good (PGOOD) signal. When the regulated  
output voltage of an enabled switcher rises above 93.5%  
of its programmed value, the PGOOD signal will transition  
high.Whentheregulatedoutputvoltagefallsbelow92.5%  
of its programmed value, the PGOOD signal is pulled low.  
3675fa  
24  
LTC3675  
OPERATION  
Onstart-up,allPGOODoutputsareunmaskedandapower-  
on reset will cause RSTB to be pulled low. Once all enabled  
regulators have their output PGOOD for 200ms typical  
To prevent thermal damage to the LTC3675 and its sur-  
rounding components, the LTC3675 incorporates an  
overtemperature (OT) function. When the LTC3675 die  
temperaturereaches150°Callenabledregulatorsareshut  
down and remain in shutdown until the die temperature  
falls to 135°C. The LTC3675 also has an overtemperature  
warning function which warns a user that the die tempera-  
tureisapproachingtheOTthresholdwhichallowstheuser  
to take any corrective action. The OT warning threshold is  
user programmable as shown in Table 3.  
(C = 0.01μF) the RSTB output goes Hi-Z.  
T
By masking a PGOOD signal, the RSTB or IRQB pin will  
remain Hi-Z even though the output voltage of a regulator  
may be below its PGOOD threshold. However, when the  
status register is read back, the true condition of PGOOD  
is reported.  
Table 3. OT Warning Thresholds  
OT[1], OT[0]  
UNDERVOLTAGE AND OVERTEMPERATURE  
FUNCTIONALITY  
OT WARNING THRESHOLD  
10° Below OT  
00 (Default)  
The undervoltage (UV) circuit monitors the input supply  
voltage and shuts down all enabled regulators if the input  
voltage falls below 2.45V. The LTC3675 also provides a  
user with an undervoltage warning, which indicates to the  
user that the input supply voltage is approaching the UV  
threshold. The undervoltage warning threshold is user  
programmable as shown in Table 2.  
01  
10  
11  
20° Below OT  
30° Below OT  
40° Below OT  
A UV or OT warning is reported to the user when the IRQB  
pin is in its high impedance state. The UV and OT warning  
flags are not maskable by the user.  
RESET_ALLFunctionality:TheRESET_ALLbitshutsdown  
all enabled regulators (enabled either via its enable pin or  
Table 2. UV Warning Thresholds  
UV[2], UV[1], UV[0]  
FALLING V WARNING THRESHOLD  
IN  
2
I C) for 1 second. All command registers are cleared and  
000 (Default)  
001  
2.7V  
2.8V  
2.9V  
3.0V  
3.1V  
3.2V  
3.3V  
3.4V  
put in their default state.  
010  
011  
100  
101  
110  
111  
3675fa  
25  
LTC3675  
APPLICATIONS INFORMATION  
Switching Regulator Output Voltage and Feedback  
Network  
Buck Regulators  
All four buck regulators are designed to be used with  
2.2μH inductors. Tables 4 and 5 show the recommended  
inductors for the 500mA and 1A buck regulators.  
The output voltage of the switching regulators is pro-  
grammedbyaresistordividerconnectedfromtheswitching  
regulator’s output to its feedback pin and is given by V  
OUT  
The input supply needs to be decoupled with a 10μF  
capacitor while the output needs to be decoupled with  
a 22μF capacitor for a 1A buck regulator and 10μF for a  
500mA buck regulator. Refer to Capacitor Selection in the  
Applications Information section for details on selecting  
a proper capacitor.  
= V (1 + R2/R1) as shown in Figure 5. Typical values for  
FB  
R1rangefrom40kto1Mꢀ. Thebuckregulatortransient  
response may improve with optional capacitor C that  
FF  
helps cancel the pole created by the feedback resistors  
and the input capacitance of the FB pin. Experimentation  
with capacitor values between 2pF and 22pF may improve  
transient response.  
2
EachbuckregulatorcanbeprogrammedviaI C.Toprogram  
buckregulator1(1A)usesub-address01h,buckregulator2  
(1A) sub-address 02h, buck regulator 3 (500mA) sub-  
address 03h and buck regulator4 (500mA) sub-address  
04h. The bit format is explained in Table 6.  
V
OUT  
+
SWITCHING  
REGULATOR  
C
C
R2  
FF  
OUT  
(BUCK, BOOST,  
BUCK-BOOST)  
FB  
Combined Buck Regulators  
(OPTIONAL)  
R1  
A single 2A buck regulator is available by combining both  
1A buck regulators together. Both the 500mA buck regula-  
tors may also be combined together to form a 1A buck  
regulator.Tables4and7showtherecommendedinductors.  
3675 F05  
Figure 5. Feedback Components  
The input supply needs to be decoupled with a 22μF  
capacitor while the output needs to be decoupled with  
Table 4. Recommended Inductors for 1A Buck Regulators and Ganged Buck 3, Buck 4 Application  
PART NUMBER  
L(μH)  
MAX I (A)  
MAX DCR (mꢀ)  
MANUFACTURER  
SIZE IN mm (L × W × H)  
4 × 4 × 1.8  
DC  
LPS4018-222  
2.2  
2.8  
3.5  
3.2  
2.0  
70  
Coilcraft  
www.coilcraft.com  
XFL4022-222  
LTF5022-2R2  
LPS3015-222  
2.2  
2.2  
2.2  
21.35  
36  
Coilcraft  
www.coilcraft.com  
4 × 4 × 2  
5 × 5.2 × 2.2  
3 × 3 × 1.5  
TDK  
www.tdk.com  
110  
Coilcraft  
www.coilcraft.com  
Table 5. Recommended Inductors for 500mA Buck Regulators  
PART NUMBER  
L(μH)  
MAX I (A)  
MAX DCR (mꢀ)  
MANUFACTURER  
SIZE IN mm (L × W × H)  
3 × 3 × 1.5  
DC  
LPS3015-222  
2.2  
2.0  
110  
Coilcraft  
www.coilcraft.com  
MLPS3015-2R2  
MDT2520-CR2R2  
LQM2HPN2R2  
2.2  
2.2  
2.2  
1.4  
110  
90  
Maglayers  
3 × 3 × 1.5  
2.5 × 2 × 1  
2.5 × 2 × 1.1  
www.maglayers.com  
1.35  
1.0  
Toko  
www.toko.com  
120  
Murata  
www.murata.com  
3675fa  
26  
LTC3675  
APPLICATIONS INFORMATION  
a 47μF capacitor for a 2A combined buck regulator and  
22μF for a 1A combined buck regulator. Refer to “Capaci-  
tor Selection” in the Applications Information section for  
details on selecting a proper capacitor.  
The input supply needs to be decoupled with a 10μF  
capacitor while the output needs to be decoupled with  
two 22μF capacitors. Refer to Capacitor Selection in the  
Applications Information section for details on selecting  
a proper capacitor.  
Boost Regulator  
2
The boost regulator can be programmed via I C. To pro-  
The boost regulator is designed to be used with a 2.2μH  
inductor. Table 8 provides a list of recommended inductors.  
gram the boost regulator, use sub-address 05h. The bit  
format is explained in Table 9.  
Table 6. Buck Regulator Program Register Bit Format  
Bit7  
Enable  
Default is '0' which disables the part. A buck regulator can also be enabled via its enable pin.  
2
When enabled via pin, the contents of the I C register program its functionality.  
Bit6  
OUT_Hi-Z  
Default is ‘1’ in which the SW node remains in a high impedance state when the regulator is in shutdown.  
A ‘0’ pulls the SW node to GND through a 10k resistor.  
Bit5  
Bit4  
Mode  
Default is ‘1’ which is Burst Mode operation. A ‘0’ programs the regulator to operate in pulse-skipping mode.  
Slow Edge  
This bit controls the slew rate of the switch node. Default is '0' which enables the switch node to slew at a  
faster rate, than if the bit were programmed a '1'.  
Bit3(DAC3)  
Bit2(DAC2)  
Bit1(DAC1)  
Bit0(DAC0)  
DAC Control  
These bits are used to program the feedback regulation voltage. Default is '1111' which programs a full-scale  
voltage of 800mV. Bits '0000' program the lowest feedback regulation of 425mV. A LSB (DAC0) has a bit  
weight of 25mV.  
Table 7. Recommended Inductors for 2A Combined Buck Regulator  
PART NUMBER  
L(μH)  
MAX I (A)  
MAX DCR (mꢀ)  
MANUFACTURER  
SIZE IN mm (L × W × H)  
4 × 4 × 2  
DC  
XFL4022-222  
2.2  
3.5  
21.35  
Coilcraft  
www.coilcraft.com  
LPS6225-222  
FDV0530-2R2  
2.2  
2.2  
4
45  
Coilcraft  
6 × 6 × 2.5  
www.coilcraft.com  
5.3  
17.3  
Toko  
www.toko.com  
6.2 × 5.8 × 3  
Table 8. Recommended Inductors for Boost Regulator and Buck-Boost Regulator  
PART NUMBER  
L(μH)  
MAX I (A)  
MAX DCR (mꢀ)  
MANUFACTURER  
SIZE IN mm (L × W × H)  
4 × 4 × 2  
DC  
XFL4022-222  
2.2  
3.5  
21.35  
Coilcraft  
www.coilcraft.com  
LTF5022-2R2  
2.2  
3.2  
36  
TDK  
www.tdk.com  
5 × 5.2 × 2.2  
Table 9. Boost Regulator Program Register Bit Format  
Bit7  
Bit6  
Bit5  
Bit4  
Enable  
x
Default is ‘0’ which disables the boost.  
Unused  
Mode  
Slow Edge  
Mode = 0 is PWM mode, Mode = 1 is Burst Mode operation  
This bit controls the slew rate of the switch node. Default is ‘0’ which enables the switch node  
to slew at a faster rate than if the bit were programmed a ‘1.’  
Bit3(DAC3)  
Bit2(DAC2)  
Bit1(DAC1)  
Bit0(DAC0)  
DAC Control  
These bits are used to program the feedback regulation voltage. Default is ‘1111’ which  
programs a full-scale voltage of 800mV. Bits ‘0000’ program the lowest feedback regulation of  
425mV. A LSB (DAC0) has a bit weight of 25mV.  
3675fa  
27  
LTC3675  
APPLICATIONS INFORMATION  
OptionalcapacitorC isnotneededandmaycompromise  
To ensure loop stability, feedback resistor R1 in Figure 5  
FF  
loop stability.  
should be no greater than 105kꢀ. Optional capacitor C  
is not needed and may compromise loop stability.  
FF  
Buck-Boost Regulator  
LED Driver  
The buck-boost regulator is an internally compensated  
voltage mode regulator that is designed to be used with  
a 2.2μH inductor. Recommended inductors are listed in  
the Table 8.  
For proper operation the LED driver boost circuit needs  
a 10μH inductor. Recommended inductors are listed in  
Table 11.  
The input supply needs to be decoupled with a 10μF  
capacitor while the output needs to be decoupled with  
a 22μF capacitor. Refer to “Capacitor Selection” in the  
Applications Information section for details on selecting  
a proper capacitor.  
TheLEDdriveralsoneedsarectifierdiode.Recommended  
schottky diodes are listed in Table 12.  
The LED driver has two registers that can be programmed  
2
via I C. One of the registers is accessed at sub-address  
07h and the bit format is as shown in Table 13.  
2
The buck-boost regulator can be programmed via I C. To  
The rate at which the gradation circuit ramps the LED cur-  
rent is set by GRAD[2:0]. GRAD[2:0] sets the time the LED  
driverwilltaketotransitionthroughoneLSBofLEDcurrent.  
program the buck-boost regulator, use sub-address 06h.  
The bit format is explained in Table 10.  
Table 10. Buck-Boost Regulator Program Register Bit Format  
Bit7  
Enable  
Default is ‘0’ which disables the buck-boost. The buck-boost regulator can alternately be enabled via its enable pin.  
2
When enabled via pin, the contents of the I C register program its functionality.  
Bit6  
Bit5  
Bit4  
x
Unused  
Mode  
Mode = 0 is PWM mode, Mode = 1 is Burst Mode operation. Default is ‘0.’  
Slow edge  
This bit controls the slew rate of the switch node. Default is ‘0’ which enables the switch node to slew at a faster rate  
than if the bit were programmed a ‘1.’  
Bit3(DAC3)  
Bit2(DAC2)  
Bit1(DAC1)  
Bit0(DAC0)  
DAC control  
These bits are used to program the feedback regulation voltage. Default is ‘1111’ which programs a full-scale voltage of  
800mV. Bits ‘0000’ program the lowest feedback regulation of 425mV. A LSB (DAC0) has a bit weight of 25mV.  
Table 11. Recommended Inductors for LED Driver  
PART NUMBER  
L(μH)  
MAX I (A)  
MAX DCR (mꢀ)  
MANUFACTURER  
SIZE IN mm (L × W × H)  
6 × 6 × 2.5  
DC  
LPS6225-103M  
10  
2.1  
105  
Coilcraft  
www.coilcraft.com  
IHLP2020BZER10RM01  
10  
4
184  
Vishay  
www.vishay.com  
5.2 × 5.5 × 2  
Table 12. Recommended Schottky Diodes for LED Driver  
PART NUMBER  
I (A)  
F
MANUFACTURER  
PD3S140  
1.0  
1.16  
1.0  
Diodes Inc.  
www.diodes.com  
ZLLS1000  
Diodes Inc./Zetex  
www.diodes.com  
CTLSH1-40M322  
Central Semiconductor  
www.centralsemi.com  
3675fa  
28  
LTC3675  
APPLICATIONS INFORMATION  
Table 13. LED Driver Regulator Program Register 1 Bit Format  
Bit7  
x
Unused  
Bit6  
Bit5  
Mode1  
Mode0  
Mode1 = Mode0 = 0 is default; both LED pins are regulated.  
Mode1 = 0 Mode0 = 1; Only LED1 is regulated. (Single string application).  
Mode1 = 1 Mode0 = 0; LED driver is configured as a high voltage boost regulator.  
Mode1 = Mode0 = 1; Both LED pins are regulated, but boost is not powered up. In this mode an external  
voltage is needed to drive the LED’s.  
Bit4  
Bit3  
Slow Edge  
This bit controls the slew rate of the switch node. Default is ‘0’ which enables the switch node to slew at a  
faster rate than if the bit were programmed a ‘1.’  
2xFS  
This bit doubles the full-scale programmed LED current. Default is ‘1.’  
LED current gradation timing bits. Default is ‘111.’ See Table 14.  
Bit2(GRAD2)  
Bit1(GRAD1)  
Bit0(GRAD0)  
DAC Control  
These times are shown in Table 14. The default state of  
000 in GRAD[2:0] results in a very fast ramp time that  
cannot be visually perceived.  
To maintain stability, the average inductor current must  
be maintained below 750mA. This limits the deliverable  
output current at low input supply voltages. Figure 8 gives  
an example of the LED driver configured as a high voltage  
boost regulator.  
Table 14. LED Gradation Bits  
GRAD2, GRAD1, GRAD0  
GRADATION STEP TIME  
0.056 ms  
000  
Input and Output Decoupling Capacitor Selection  
001  
0.912 ms  
The LTC3675 has multiple input supply pins and output  
pins. Each of these pins must be decoupled with low ESR  
capacitors to GND. These capacitors must be placed as  
closetothepinsaspossible. Ceramicdielectriccapacitors  
are a good compromise between high dielectric constant  
andstabilityversustemperatureandDCbias.Notethatthe  
capacitance of a capacitor deteriorates at higher DC bias.  
It is important to consult manufacturer data sheets and  
obtain the true capacitance of a capacitor at the DC bias  
voltage it will be operated at. For this reason, avoid the  
use of Y5V dielectric capacitors. The X5R/X7R dielectric  
capacitors offer good overall performance.  
010  
1.824 ms  
011  
3.648 ms  
100  
7.296 ms  
101  
14.592 ms  
29.184 ms  
58.368 ms  
110  
111 (Default)  
The LED DAC register is at sub-address 08h. All 8 bits in  
this register are used to control LED current. The default  
state of this register is 00h which disables the LED driver.  
See Table 1.  
Operating the LED Driver As a High Voltage Boost  
Regulator  
The input supply voltage pins 6, 7, 10 and 40 all need  
to be decoupled with at least 10μF capacitors. The input  
supply pins 31 and 34 and the DVCC pin 41 need to be  
decoupled with 2.2μF capacitors. The outputs of the 1A  
buck regulators need 22μF capacitors, while the outputs  
of the 500mA buck regulators need 10μF capacitors. The  
buck-boost output regulator needs a 22μF decoupling  
capacitor. The boost regulator needs two 22μF output  
decoupling capacitors. The LED driver output pin should  
be decoupled with a 4.7μF capacitor.  
The LED driver may be configured as a high voltage boost  
regulator capable of producing an output voltage up to  
40V. The boost mode may be programmed via I C. In  
this mode, the LED_OV pin serves as the feedback pin.  
The feedback resistors are selected as discussed in the  
SwitchingRegulatorOutputvoltageandFeedbackNetwork  
section. The LED_FS pins must be tied to the input supply  
in this mode. When configured as a high voltage boost,  
the LED DAC register is ignored.  
2
3675fa  
29  
LTC3675  
APPLICATIONS INFORMATION  
Choosing the C Capacitor  
T
The C capacitor may be used to program the timing  
T
parameters associated with the pushbutton. For a given  
C capacitor the timing parameters may be calculated as  
T
below. C is in units of μF.  
T
t
t
t
t
t
t
= 5000 × C ms  
T
ONB_LO  
= 5000 × C ms  
PBSTAT_PW  
ONB_WAKE  
T
= 40000 × C ms  
T
= 500 × C seconds  
WAKE_ON  
T
= 500 × C seconds  
ONB_HR  
T
= 100 × C seconds  
HR  
T
Programming the UVOT Register  
The UV/OT warning byte (default 0000 0000) structure  
is as below:  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
RESET_ALL  
UV[2]  
UV[1]  
UV[0]  
Unused  
Unused  
OT[1]  
OT[0]  
Programming the RSTB and IRQB Mask Registers  
The RSTB mask register can be programmed by the user  
at sub-address 0Ah and its format is as below.  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
Unused  
PGOOD7  
PGOOD6  
PGOOD5  
PGOOD4  
PGOOD3  
PGOOD2  
PGOOD1  
If a bit is set to ‘1,’ then the corresponding regulator’s  
PGOOD will pull RSTB low if a PGOOD fault were to occur.  
The default for this register is FFh.  
The IRQB mask register has the same bit format as the  
RSTB mask register. The IRQB mask register is located at  
sub-address 0Bh and its default contents are 00h.  
PGOOD7 is used only when the LED driver is configured  
as a high voltage boost regulator.  
3675fa  
30  
LTC3675  
APPLICATIONS INFORMATION  
Status Byte Read Back  
WheneithertheRSTBorIRQBpinispulledlow,itindicates  
to the user that a fault condition has occurred. To find out  
theexactnatureofthefault,theusercanreadthestatusreg-  
isters.Therearetwostatusregisters.Oneregisterprovides  
real time fault condition reporting while a second register  
latches data when an interrupt has occurred. Figure 4  
shows the operation of the real time and latched status  
registers. The contents of the latched status register are  
cleared when a CLRINT signal is issued. A PGOOD bit is  
a ‘0’ if that regulator’s output voltage is more than 8%  
below its programmed value.  
The sub-address for the real time status register is 0Ch  
and its format is as follows:  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
Unused  
Unused  
PGOOD6  
PGOOD5  
PGOOD4  
PGOOD3  
PGOOD2  
PGOOD1  
The sub-address for the latched status register is 0Dh and  
its format is as follows:  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
UV  
OT  
PGOOD6  
PGOOD5  
PGOOD4  
PGOOD3  
PGOOD2  
PGOOD1  
A write operation cannot be performed to either of the  
status registers.  
PCB Considerations  
When laying out the printed circuit board, the following  
list should be followed to ensure proper operation of the  
LTC3675:  
1. Theexposedpadofthepackage(pin45)shouldconnect  
directlytoalargegroundplanetominimizethermaland  
electrical impedance.  
2. All the input supply pins must be tied together and each  
supply pin should have a decoupling capacitor.  
3. The switching regulator input supply pins and their re-  
spective decoupling capacitors should be kept as short  
as possible. The GND side of these capacitors should  
3675fa  
31  
LTC3675  
connect directly to the ground plane of the part. These  
capacitors provide the AC current to the internal power  
MOSFETs and their drivers. It’s important to minimize  
and LED_OV node should be kept far away or shielded  
from the switching nodes or poor performance could  
result.  
inductance from these capacitors to the V pins of the  
IN  
5. The GND side of the switching regulator output capaci-  
torsshouldconnectdirectlytothethermalgroundplane  
of the part. Minimize the trace length from the output  
capacitor to the inductor(s)/pin(s).  
LTC3675.  
4. The switching power traces connecting SW1, SW2,  
SW3, SW4, SW5, SWAB6, SWCD6 and SW7 to their  
respective inductors should be minimized to reduce  
radiated EMI and parasitic coupling. Due to the large  
voltage swing of the switching nodes, high input im-  
pedance sensitive nodes such as the feedback nodes  
6. Inacombinedbuckregulatorapplicationthetracelength  
of switch nodes to the inductor must be kept equal to  
ensure proper operation.  
3675fa  
32  
LTC3675  
TYPICAL APPLICATIONS  
Li-Ion  
CELL  
2.7V  
V
V
IN  
IN  
TO 4.2V  
10μF  
2.2μF  
2.2μH  
1.2V  
1A  
1.2V  
25mA  
LDO_OUT  
LDOFB  
SW1  
FB1  
10μF  
22μF  
22μF  
10μF  
324k  
649k  
324k  
649k  
V
V
IN  
IN  
10μF  
10μF  
2.2μH  
2.5V  
1A  
2.2μH  
SW2  
FB2  
SW5  
VOUT5  
655k  
309k  
5V, 1A  
22μF  
22μF  
22μF  
1.05M  
200k  
FB5  
LTC3675  
V
IN  
2.2μH  
10μF  
2.2μH  
2.2μH  
SWAB6  
SWCD6  
VOUT6  
1.8V  
500mA  
SW3  
FB3  
590k  
475k  
3.3V, 1A  
10μF  
322k  
105k  
FB6  
1.6V  
SW4  
FB4  
500mA  
DV  
CC  
10μF  
10μF  
511k  
511k  
1μF  
2
I C  
CONTROL  
SCL  
SDA  
10μH  
IRQB  
RSTB  
WAKE  
PBSTAT  
EN1  
SW7  
4.7μF  
50V  
MICROPROCESSOR  
CONTROL  
EN2  
EN3  
UP TO  
10 LEDS  
t
t
t
t
t
t
EN4  
EN6  
CT  
LED1  
LED2  
1.96M  
42.2k  
0.01μF  
LED_OV  
LED_FS  
ONB  
EXPOSED PAD  
PUSH BUTTON  
20k  
3675 F06  
Figure 6. Detailed Front Page Application Circuit  
3675fa  
33  
LTC3675  
TYPICAL APPLICATIONS  
Li-Ion CELL  
2.7V TO 4.2V  
V
V
IN  
IN  
2.2μF  
10μF  
2.2μH  
1.2V  
1A  
1.2V  
25mA  
LDO_OUT  
LDOFB  
SW1  
FB1  
10μF  
22μF  
324k  
649k  
324k  
649k  
V
V
IN  
IN  
10μF  
10μF  
2.2μH  
2.5V  
1A  
2.2μH  
SW2  
FB2  
SW5  
22μF  
655k  
309k  
VOUT5  
5V, 1A  
22μF  
22μF  
22μF  
1.05M  
200k  
FB5  
LTC3675  
V
IN  
2.2μH  
10μF  
2.2μH  
2.2μH  
SWAB6  
SWCD6  
VOUT6  
1.8V  
SW3  
FB3  
500mA  
590k  
475k  
3.3V, 1A  
10μF  
332k  
105k  
10μF  
1μF  
FB6  
1.6V  
500mA  
SW4  
FB4  
DV  
CC  
10μF  
10μF  
511k  
511k  
2
I C  
CONTROL  
SCL  
SDA  
IRQB  
RSTB  
WAKE  
PBSTAT  
EN1  
10μH  
SW7  
4.7μF  
50V  
MICROPROCESSOR  
CONTROL  
EN2  
EN3  
EN4  
ENBB  
CT  
UP TO  
10 LEDS  
t
t
t
LED1  
LED2  
1.96M  
42.2k  
0.01μF  
LED_OV  
LED_FS  
ONB  
EXPOSED PAD  
PUSH BUTTON  
20k  
3675 F07  
Figure 7. Buck Regulators with Sequenced Start-Up and a Single String of LEDs.  
Buck Regulators Power-Up in the Sequence Buck1, Buck2 and Buck3  
3675fa  
34  
LTC3675  
TYPICAL APPLICATIONS  
Li-Ion  
CELL  
2.7V  
V
IN  
V
IN  
TO 4.2V  
2.2μF  
10μF  
1.2V  
25mA  
LDO_OUT  
LDOFB  
2.2μH  
10μF  
324k  
649k  
2.5V  
2A  
SW1  
SW2  
FB1  
22μF  
22μF  
655k  
309k  
V
IN  
10μF  
2.2μH  
V
IN  
SW5  
VOUT5  
10μF  
5V, 1A  
FB2  
22μF  
22μF  
22μF  
1.05M  
200k  
FB5  
V
IN  
LTC3675  
10μF  
22μF  
2.2μH  
2.2μH  
SWAB6  
SWCD6  
VOUT6  
1.2V  
1A  
SW3  
3.3V, 1A  
10μF  
1μF  
332k  
105k  
324k  
SW4  
FB3  
FB6  
649k  
DV  
CC  
2
I C  
FB4  
CONTROL  
SCL  
SDA  
LED_FS  
10μF  
10μH  
IRQB  
RSTB  
WAKE  
PBSTAT  
EN1  
12V  
SW7  
150mA  
MICROPROCESSOR  
CONTROL  
10μF  
20V  
EN2  
EN3  
EN4  
1.87M  
ENBB  
CT  
LED_OV  
LED1  
LED2  
0.01μF  
133k  
ONB  
EXPOSED PAD  
PUSH BUTTON  
3675 F08  
Figure 8. Combined Buck Regulators and a High Voltage Boost Regulator  
3675fa  
35  
LTC3675  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UFFMA Package  
44-Lead Plastic QFN (4mm × 7mm)  
(Reference LTC DWG # 05-08-1762 Rev A)  
1.48 0.05  
0.70 0.05  
1.70 0.05  
2.56 0.05  
4.50 0.05  
3.10 0.05  
2.40 REF  
2.02 0.05  
2.76 0.05  
0.98 0.05  
2.64 0.05  
PACKAGE  
OUTLINE  
0.20 0.05  
5.60 REF  
0.40 BSC  
6.10 0.05  
7.50 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 s 45o  
CHAMFER  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p0.05  
2.40 REF  
4.00 p0.10  
43  
44  
0.00 – 0.05  
0.40 p0.10  
1
2
PIN 1  
TOP MARK  
(SEE NOTE 6)  
2.64  
0.10  
2.56  
0.10  
7.00 p0.10  
5.60 REF  
R = 0.10  
TYP  
1.70  
0.10  
2.76  
0.10  
0.74 0.10  
R = 0.10 TYP  
0.74 0.10  
(UFF44MA) QFN REV A 0410  
R = 0.10 TYP  
0.200 REF  
0.20 p0.05  
0.40 BSC  
0.98 0.10  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3675fa  
36  
LTC3675  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
4/12  
Clarified PGood Threshold Voltage spec, added Min/Max  
Clarified Note 2, electrical grades and temperatures  
Modified pin function descriptions for RSTB and IRQB  
4
7
14  
2
Changed figure reference in I C Interface section  
21  
Modified PGood Comparator Polarity Figure 4  
24  
Modified Programming the RSTB and IRQB Mask Registers section  
Modified Status Byte Read Back section  
30  
31  
Modified application circuit V caps  
33, 34, 35, 38  
IN  
3675fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
37  
LTC3675  
TYPICAL APPLICATION  
Li-Ion  
CELL  
2.7V  
V
IN  
V
IN  
TO 4.2V  
10μF  
10μF  
10μF  
2.2μF  
2.2μH  
1.2V  
1A  
1.2V  
25mA  
LDO_OUT  
LDOFB  
SW1  
FB1  
10μF  
22μF  
22μF  
10μF  
324k  
649k  
324k  
649k  
V
IN  
V
IN  
10μF  
2.2μH  
2.5V  
1A  
2.2μH  
SW2  
FB2  
SW5  
VOUT5  
655k  
309k  
5V, 1A  
22μF  
22μF  
22μF  
1.05M  
200k  
FB5  
LTC3675  
V
IN  
2.2μH  
2.2μH  
2.2μH  
SWAB6  
SWCD6  
VOUT6  
1.8V  
500mA  
SW3  
FB3  
590k  
475k  
3.3V, 1A  
10μF  
332k  
105k  
FB6  
1.6V  
500mA  
SW4  
FB4  
DV  
CC  
10μF  
10μF  
511k  
511k  
1μF  
2
I C  
CONTROL  
SCL  
SDA  
10μH  
IRQB  
RSTB  
WAKE  
PBSTAT  
EN1  
SW7  
4.7μF  
50V  
MICROPROCESSOR  
CONTROL  
EN2  
EN3  
UP TO  
10 LEDS  
t
t
t
t
t
t
EN4  
EN6  
CT  
LED1  
LED2  
1.96M  
42.2k  
0.01μF  
LED_OV  
LED_FS  
ONB  
EXPOSED PAD  
PUSH BUTTON  
20k  
3675 TA02  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Triple, Synchronous, 100% Duty Cycle, PGOOD Pin, Programmable V Servo Voltage  
LTC3569  
Triple Buck Regulator with 1.2A and  
Two 600mA Outputs and Individual  
Programmable References  
FB  
LTC3577/  
Highly Integrated Portable/Navigation PMIC PMIC: Linear Power Manager and Three Buck Regulators, 10-LED Boost Regulator,  
2
LTC3577-1/  
LTC3577-3/  
LTC3577-4  
Synchronous Bucks ADJ at 800mA/500mA/500mA, PB Control, I C Interface, 2× 150mA  
LDOs, OVP Charge Current Programmable Up to 1.5A from Wall Adapter Input, Thermal  
Regulation, 4mm × 7mm QFN-44 Package; "-1" and "-4" Versions Have 4.1V V  
, "-3"  
FLOAT  
Version for SiRF Atlas IV Processors  
LTC3586/  
LTC3586-1  
Switching USB Power Manager with Li-Ion/ PMIC: Switching Power Manager, 1A Buck-Boost + 2 Bucks ADJ to 0.8V at  
Polymer Charger, 1A Buck-Boost + Dual  
Sync Buck Converter + Boost + LDO  
400mA/400mA + 800mA Boost + LDO, Charge Current Programmable Up to 1.5A from  
Wall Adapter Input, 4mm × 6mm QFN-38 Package; "-1" Version Has 4.1V V  
FLOAT  
3675fa  
LT 0412 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
38  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY